

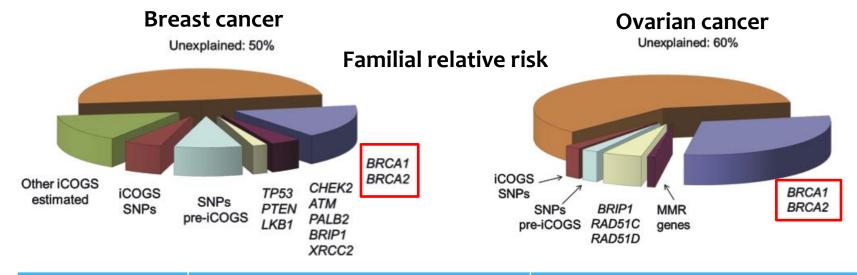
Hi-Plex for High-Throughput Mutation Screening of BRCA1, BRCA2, TP53, and PALB2 in Breast and Ovarian Cancer Patients

<u>Sean Wen</u>, Lai Kah Nyin, Daniel J. Park, Tu Nguyen-Dumont, Fleur Hammet, Melissa Southey, Woo Yin Ling, Yip Cheng Har, Nur Aishah Mohd Taib, Teo Soo Hwang

Cancer Research Malaysia

Worldwide distribution of female cancers

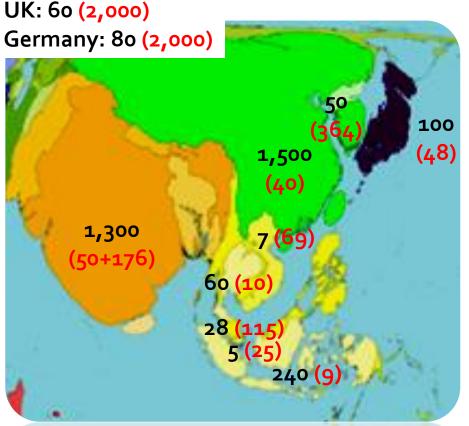
Cancer type	Breast	Ovary	Cervix	Endometrium
Incidence	1,671,149	238,719	527,624	319,605
Mortality	521,907	151,917	265,672	76,160
M:I	31%	64%	50%	24%


Source: GLOBOCAN 2012

cancer

research malaysia

Breast and ovarian predisposition genes



Genes	Breast	cancer	Ovarian cancer		
	Risk estimates Prevalence ¹ Risk estim		Risk estimates	Prevalence ¹	
BRCA1	44-75%	1-3%	43-76%	4.9-9.6%	
BRCA2	41-70%	1-3%	44-80%	0.9-5.7%	
TP53	> 90%	< 1%	?	?	
PALB2	26-46%	< 1%	?	< 1%	

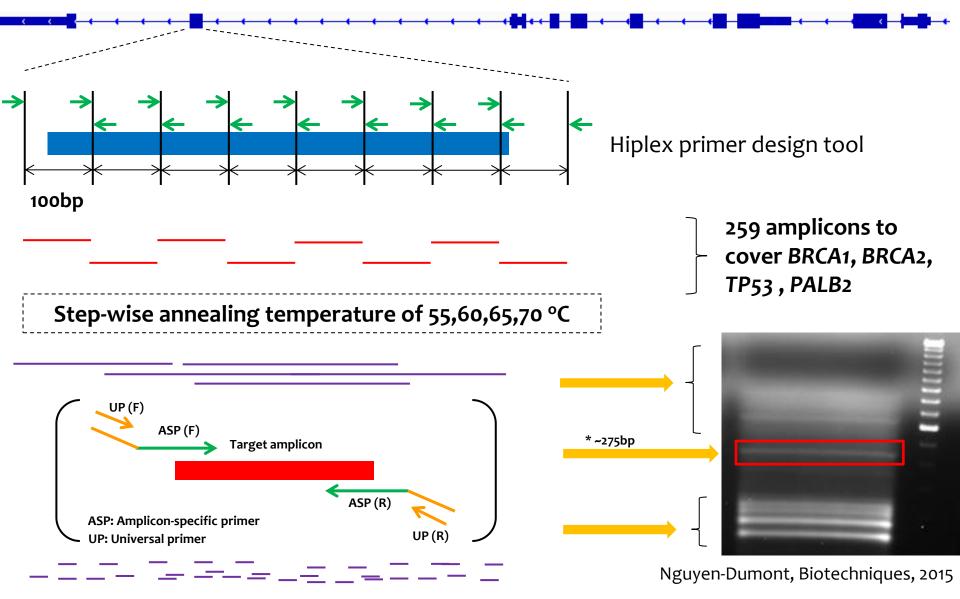
¹ Prevalence in unselected population-based studies

Gaps in access to genetic testing in Asia

Population (millions) Carrier families (number) [aka 2010]

Challenge

- Severe under-testing in Asia
- <1% of newly diagnosed breast cancer patients receive genetic testing
- Main reason: Cost


Nakamura, Public Health Genomics, 2016

Our approach

To develop a high-throughput and cost-efficient genetic testing method to increase affordability and accessibility

Hi-Plex work flow

Bioinformatics workflow

- Sequencing platform: MiSeq
- Reads alignment: Bowtie2
- Variant calling: ROVER
 - Variant present on both read-pairs
 - Variant present in at least 2 read-pairs
 - Variant present at least 15% of all read-pairs
- Variant annotation: ANNOVAR
- Variant prioritisation
 - Exclude variants with MAF >1%
 - dbSNP138
 - 1000genome
 - ESP6500
 - Japanese cohort
 - Exclude variants on intronic sites

Langmead, Nat Methods, 2012 Pope, Source Code Biol Med, 2014 Wang, Nucleic Acid Res, 2010 Nagasaki, Nat Commun, 2015

Candidate variants

Panel evaluation: Sensitivity assessment

	Region covered (bp)	Variants tested	Variant type						
Genes			Deletion		Insertion		CNIV	Variants detected	
			1-3bp	4-6bp	7-9bp	1-3bp	4-6bp	SNV	uctected
BRCA1	7,100	83	19	-	-	4	-	60	83
BRCA2	11,900	121	13	8	1	6	-	93	120
TP53	2,000	7	1	-	-	-	1	5	7
PALB2	4,900	5	2	2	-	1	-	-	5
Total	25,900	216	35	10	1	11	1	158	215
		176 patients							

- 215 of 216 variants successfully detected
- Sensitivity of 99.5%

Panel evaluation: Specificity assessment

- 3,209 variants detected by our panel
- Filtered away polymorphisms (n=2,717), intronic variants (n=265), variants on homopolymer region (n=1)
- 215 variants previously reported + 11 rare coding variants previously not reported

No.	Gene	Genomic change	Nucleotide change	Amino acid change	Reconfirmed to be true?
1	BRCA1	chr17:g.41245675G>A	c.1873C>T	p.L625L	Yes
2	BRCA1	chr17:g.41245465C>T	c.2083G>A	p.D695N	Yes
3	BRCA1	chr17:g.41251820A>T	c.519T>A	p.P173P	Yes
4	BRCA2	chr13:g.32912750G>T	c.4258G>T	p.D1420Y	Yes
5	BRCA2	chr13:g.32913919C>T	c.5427C>T	p.C1809C	Yes
6	BRCA2	chr13:g.32968854C>T	c.9285C>T	p.D3095D	Yes
7	BRCA2	chr13:g.32953550G>A	c.8851G>A	p.A2951T	Yes
8	BRCA2	chr13:g.32914277A>G	c.5785A>G	p.11929V	Yes
9	BRCA2	chr13:g.32972626A>T	c.9976A>T	p.K3326*	Yes
10	BRCA2	chr13:g.32913919C>T	c.5427C>T	p.C1809C	Yes
11	PALB2	chr16:g.23647121G>A	c.746C>T	p.P249L	Yes

Panel application: Breast & ovarian cancer patients

Genes	Breas	t cancer (N =	438) ¹	Ovarian cancer (N = 286) ²			
	Deleterious	VUS ³	Non-carriers	Deleterious	VUS ³	Non- carriers	
BRCA1	12 (2.7%)	4 (0.9%)	422 (96.3%)	19 (6.6%)	4 (1.4%)	263 (92.0%)	
BRCA2	16 (3.7%)	16 (3.7%)	406 (92.7%)	12 (4.2%)	3 (1.0%)	271 (94.8%)	
TP53	2 (0.5%)	1 (0.2%)	435 (99.3%)	-	-	286 (100%)	
PALB2	3 (0.7%)	3 (0.7%)	432 (98.6%)	1 (0.3%)	2 (0.7%)	283 (99.0%)	
Total	33 (7.5%)	24 (5.5 %)	381 <mark>(87.0%)</mark>	32 (11.2%)	9 (3.1%)	245 <mark>(85.7%)</mark>	

¹ High risk, hospital-based cohort
² Unselected, hospital-based cohort
³ Non-CO missense and inframe indels

Conclusion

- We developed a high-throughput and cost-efficient genetic testing panel for four clinically relevant breast and ovarian cancer genes
 - Sensitivity of >99%
 - Specificity of >99%
- Application of panel on high risk breast patients
 - **7.5**% of patients are carriers of these genes
 - BRCA1/2 carriers were more likely to have younger age at diagnosis, have family history of breast cancers, and have triple-negative breast cancers
 - **2** *TP*53 carriers identified have no known family history of Li-Fraumeni Syndrome cancers but were early-onset (<35yo)
 - **3** PALB2 carriers identified have family history of breast cancer
- Application of panel on unselected ovarian cancer patients (Hasmad, Gynecol Oncol, 2016)
 - **10.8% of** patients are carriers of BRCA1 and BRCA2
 - Mutation carriers were more likely to be Indian, have serous ovarian cancer, and have more relatives with breast or ovarian cancer
 - **42**% of mutation carriers did not have any family history of breast or ovarian cancer
 - Offering genetic counselling and genetic testing only to women with family history would mean that **35**% of BRCA1 mutation carriers and **57**% of BRCA2 mutation carriers would not be offered genetic testing
 - Emphasis on genetic screening on all unselected ovarian cancer patients

Acknowledgment

Core Team

Lai Kah Nyin Joanna Lim Teo Soo Hwang

Familial Team

Lee Sheau Yee Tiara Hassan Daphne Lee Caziena Krishnan Yoon Sook Yee

Breast Cancer Team

Nadia Rajaram Kwan Pui Yoke Jaslyn Soo Sian Siu Shivaani Mariapun Siti Norhidayu Hasan Patsy Ng Pei Sze


Clinicians Nur Aishah Mohd Taib Yip Cheng Har Woo Yin Ling

Collaborators

Daniel J Park Tu Nguyen-Dumont Fleur Hammet

and many, MANY more individuals...

Thank you 고맙습니다