DEVELOPMENT AND VALIDATION OF PERSONALIZED EX VIVO PLATFORM MIMICKING PATIENT HETEROGENEOUS TUMOR MICROENVIRONMENT TO ENABLE PERSONALIZED TREATMENT FOR BREAST CANCER'

> Dr. Govind Babu K, MD Department of Medical Oncology, Kidwai Memorial Institute of Oncology, Bangalore

One Size Fits All

At present, most of the medicines for cancer patients are still representing empirical approach for therapy

Years after Mastectom

E

Journal of Medicine ©Copyright, 1995, by the Massachusetts Medical Society Volume 332 APRIL 6, 1995 Number 14 ADJUVANT CYCLOPH OSPH AMIDE. METHOTREXATE. AND FLUOROURACIL IN NODE-POSITIVE BREAST CANCER The Results of 20 Years of Follow-up GIANNI BONADONNA, M.D., PINUCCIA VALAGUSSA, B.S., ANGELA MOLITERNI, M.D., MILVIA ZAMBETTI, M.D., AND CRISTINA BRAMBILLA, M.D. No Benefit + Toxicity All patients 0.9 with the same 8.0 Survival No Benefit + Benefit diagnosis 0.7 + Toxicity Probability of Overall 0.6 10%-20% 0.5 0.4 0.3 Control + Benefit 0.2 P = 0.04 (unadjusted) No Toxicity P = 0.03 (adjusted) No Benefit 0.1 10%-20% No Benefit 0 (No Toxicity

Creation of patient tumor microenvironment : CANScript[™]

CANScript[™]: A novel platform technology measures functional outcome of drug response

1. Patient's tumor tissue taken through biopsy/surgery is incubated with customized proteins and serum in a culture plate.

2. Various drug combinations are introduced to check tumor activity through a multidimensional assay platform over 4-5 days.

4	And the second s						
				_			
-							
:0						ΕI	
I-						-1	
Ŀ							
						F١	
-					_		
			¢	D	E	'	

3. An algorithm combines the results into single predictive score "M-Score" for each drug combination.

All assays are approved by FDA

Integration of TMP and patient specific ligands for active balance of phenotypes

Majumder B et al, Nat Commun, 2015

Clinical Correlation of CANSCript[™]

ARTICLE

Received 3 Oct 2014 | Accepted 22 Dec 2014 | Published 27 Feb 2015 DOI:

DOI: 10.1038/ncomms7169

OPEN

Predicting clinical response to anticancer drugs using an *ex vivo* platform that captures tumour heterogeneity

Biswanath Majumder¹, Ulaganathan Baraneedharan^{1,*}, Saravanan Thiyagarajan^{1,*}, Padhma Radhakrishnan¹, Harikrishna Narasimhan², Muthu Dhandapani¹, Nilesh Brijwani¹, Dency D. Pinto¹, Arun Prasath¹, Basavaraja U. Shanthappa¹, Allen Thayakumar¹, Rajagopalan Surendran³, Govind K. Babu⁴, Ashok M. Shenoy⁴, Moni A. Kuriakose⁵, Guillaume Bergthold⁶, Peleg Horowitz^{6,7,8}, Massimo Loda^{6,7}, Rameen Beroukhim^{7,8}, Shivani Agarwal², Shiladitya Sengupta^{7,9,10,*}, Mallikarjun Sundaram^{1,*} & Pradip K. Majumder^{1,9,*}

CANScript[™] Makes Genomics Actionable

'Potentially Actionable' Leaves Many Unanswered Questions

CANScript[™] Clinical Validation: HNSCC

Overall CaBR tumors

n=60

Case study: A patient with Breast Cancer

Patient: A lady doctor 54 years old

Presented with CaBR Stage III and Liver Mets

Prior treatment history: Chemo (Docetaxol+Dox) and radiation and did not show any response

H&E

Ki-67

Transient cell state phenotypes (CD44 hi CD24 hi) in breast cancer cell - DTC

Src and Hck pathways are deregulated in these DTC

Major target (s)				
PI3K/AKT, mTOR				
VEGFR, PDGFR, Raf				
kinases				
VEGFR, PDGFR				
EGFR (HER-1)				
TGFβ-1R				
C-Met receptor				
BCR-Abl, Src family kinases				
НСК				
BCR-Abl, PDGFR				

а

CANScript[™] finds DTX followed by Dasatinib is the drug of choice

Patient shows PFS with DTX followed by Src inhibitor (Dasatinib) for last three years

Mitra-Harvard Collaboration

Temporally sequenced anticancer drugs overcome adaptive resistance by targeting a vulnerable chemotherapy-induced phenotypic transition

Aaron Goldman, Biswanath Majumder, Andrew Dhawan, Sudharshan Ravi, David Goldman, Mohammad Kohandel, Pradip K. Majumder & Shiladitya Sengupta

Affiliations | Contributions | Corresponding authors

Nature Communications 6, Article number: 6139 | doi:10.1038/ncomms7139 Received 18 July 2014 | Accepted 17 December 2014 | Published 11 February 2015

Mitra Biotech, Harvard unravels how to kill cancer cells that avoid chemotherapy

The method was to give another common drug just when the cancer cells begin to morph into a stem-cell like type that can avoid the chemo drugs.

Hari Pulakkat | 13 February 2015, 6:38 AM IST

For Reporters

