Circulating tumour DNA in breast cancer

Kathleen Burke, PhD Bioinformatics Postdoctoral Fellow Laboratory of Dr. Jorge Reis-Filho

Memorial Sloan Kettering Cancer Center

Conflicts of Interest

• I have no financial relationships to disclose

 I will not discuss off label use and/ or investigational use in my presentation

Summary

- Circulating tumour DNA (ctDNA)
 - Role as a predictor of outcome in early breast cancer
 - Mutation tracking
- Challenges
 - Intra-tumour genetic heterogeneity
 - De novo discovery of mutations

Circulating tumour DNA

Circulating cell-free plasma DNA (cfDNA)

- DNA present in the plasma
- Fragments are small (140 170 base pairs)
- Not cancer-specific
 - Healthy individuals: ~1 ng DNA/ml
 - Inflammatory diseases, stroke, trauma, surgery, sepsis, PE
 - Cancer patients: 4-fold greater levels
- Cancer: small % of circulating DNA is tumour-derived (ctDNA)

Circulating tumour DNA (ctDNA)

Sources of DNA release

Types of DNA alterations

The tumour burden and rate of tumour cell proliferation/ apoptosis have a substantial role!

ctDNA and tumour type

Frequency of cases with detectable ctDNA (%)

Bettegowda et al. Sci Transl Med 2014

Potential uses of ctDNA

- Estimation of risk for metastatic relapse or disease progression
- Real-time monitoring of therapy response
- Identification of therapeutic targets
 and resistance mechanisms

METASTATIC BREAST CANCER

Dawson et al. NEJM 2013; Murtaza et al. Nature 2013; Bidard et al. Sci Trans Med 2013

Early vs. advanced breast cancer

 Fraction of patients with detectable ctDNA in localized breast cancer (stages I to III)

Circulating Tumor DNA (ctDNA) in Early Breast Cancer

- Can ctDNA be detected in patients with early breast cancer?
- Does ctDNA predict relapse after treatment of primary breast cancer?

ChemoNEAR

- Led by Nick Turner RMH, London
- 31 patients enrolled in a prospective multi-centre sample collection study (ChemoNEAR, REC Ref No: 11/EE/0063)
- Patients scheduled for standard neoadjuvant chemotherapy 90% (28/31) ECx4– accPaclitaxel x4 +/- trastuzumab
- Primary breast cancer

No evidence of clinical distant metastasis Staging of all node positive and T3/4 patients according to local guidelines

• Median follow-up 17.4 months from study entry

	All patients (%)	Disease free (%)	Early relapse (%)
Ν	31	26	5
Median age (range), y	55 (29–68)	55 (29-68)	60 (57-65)
Pathology IDC NST ILC Mixed IDC/ILC Metaplastic	24 (77,5) 2 (6,5) 4 (13) 1 (3)	21 (81) 2 (7,5) 2 (7,5) 1 (4)	3 (60) 0 (0) 2 (40) 0 (0)
Histologic grade 1 2 3 N/A	0 (0) 10 (32) 20 (65) 1 (3)	0 (0) 8 (31) 17 (65) 1 (4)	0 (0) 2 (40) 3 (60) 0 (0)
Receptor status ER/PgR+ HER2- ER/PgR- HER2+ ER/PgR+ HER2+ Triple negative	11 (35) 7 (23) 7 (23) 6 (19)	10 (38,5) 7 (27) 4 (15,5) 5 (19)	1 (20) 0 (0) 3 (60) 1 (20)
Clinical size at presentation (cT) 1-2 3-4 N/A	24 (77,5) 6 (19,5) 1 (3)	21 (80,5) 4 (15,5) 1 (4)	3 (60) 2 (40) 0 (0)
Nodal status at presentation Negative Positive	18 (58) 13 (42)	16 (61,5) 10 (38,5)	2 (40) 3 (60)
Pathological response to NAC No pathCR pathCR N/A	20 (65) 10 (32) 1 (3)	17 (65) 8 (31) 1 (4)	3 (60) 2 (40) 0 (0)

Prognosis in early stage breast cancer

Tumour - Diagnostic biopsy

Surgery (for patients with residual disease)

Plasma for extraction of cell free DNA (EDTA) Baseline Post-surgery Every 6 months in follow-up

Prognosis in early stage breast cancer

Track mutations in circulating free plasma DNA

Early relapse detection

Baseline ctDNA burden is not predictive of disease free survival

Baseline ctDNA burden not different between early relapse and disease free

Lead time over clinical relapse

relapse for all relapses 8 months

Predicting early relapse – mutation tracking

Predicting early relapse

Mutation detection in the immediate post-surgical sample and dynamic mutation tracking are both highly accurate in predicting relapse

Predicting early relapse

Tracking secondary ('acquired') resistance

Identification of treatment-associated mutational changes from exome sequencing of serial plasma ctDNA.

Identifying new mutations in micrometastatic residual disease

MPS of plasma DNA

0.8

0.6

0.4

0.2

0

A

FGFR1 c.1966A>G (K656E)

Pilot

- Metastatic breast cancer patient (ER+ / HER2-)
 - Phase I study PAM4743g (Clinicaltrials.gov, NCT01090960).
 - GDC0068 pan-AKT inhibitor
 - VHIO Joan Seoane and Leticia De Mattos-Arruda
 - DNA extracted from
 - diagnostic biopsy of the primary tumour (FFPE)
 - diagnostic biopsy of the liver metastasis (FFPE)
 - peripheral blood leukocytes
 - four plasma samples during AKT inhibitor-based therapy (4th line)
- Targeted massively parallel sequencing
 - IMPACT collaboration with Mike Berger
- Response was assessed using the RECIST criteria (1.1)

ctDNA analysis captures the heterogeneity of primary tumour and metastasis

Gene	Mutation	Class	Primary tumor (85x)	Liver metastasis (139x)
AKT1	p.E17K	Missense	80%	72%
CDH1	p.159_171PPISC PENEKGPF>L	In Frame Deletion	62%	50%
CDKN2A	p.S12*	Nonsense	85%	52%
TP53	p.K132N	Missense	65%	42%
NF1	p.V2420fs	FrameShift Deletion	53%	49%
TSC1	p.S1046C	Missense	39%	41%
JAK3	p.T21M	Missense	38%	40%
MLL3	p.G292E	Missense	21%	18%
EPHB1	p.I332M	Missense	6%	26%
PIK3C2G	p.K978N	Missense	5%	45%
ESR1	p.E380Q	Missense	5%	68%
MAP2K2	p.E207Q	Missense	4%	35%
GATA1	p.K315N	Missense	3%	32%
CTNNB1	p.A522G	Missense	3%	39%
FLT4	p.R282Q	Missense	0%	26%
PAK7	p.E494*	Nonsense	0%	38%

De Mattos Arruda et al. Ann Oncol, 2014

Longitudinal monitoring of the mutant alleles in plasma-derived ctDNA

Take home messages

- Source of genetic material from patients with early breast cancer
- Methods for sequencing should be carefully chosen
- Potential use
 - Prediction of early relapse
 - Longitudinal monitoring somatic genomic alterations
 - Tracking secondary ('acquired') resistance
- ctDNA analysis remains a research tool

ctDNA sequencing in the metastatic setting Oligometastatic patients

- Potentially useful for longitudinal monitoring
- High depth required for mutation calls
- 250x-400x insufficient in most cases
- De novo discovery challenging

Take Home Messages

- ctDNA potential surrogate of tumour tissue
- ctDNA analysis
 - Prognostication
 - Prediction
 - Monitoring therapeutic resistance
 - Tacking intra-tumour heterogeneity
- *De novo* mutation calling
 - Challenging
 - Dependent on disease burden
 - More sensitive techniques required

Acknowledgements

Breast Cancer Molecular Path Lab

Jorge Reis-Filho Britta Weigelt Charlotte Ng Raymond Lim Leticia de Mattos-Arruda

Maria de Filippo Anne M Schultheis Salvatore Piscuoglio Luciano Martelotto Nicola Fusco Elena Guerini-Rocco

Memorial Sloan Kettering Cancer Center

The Royal Marsden Trust Nick Turner Isaac Garcia-Murillas Gaia Schiavon Ian Smith Mitch Dowsett

The Royal Marsden NHS Foundation Trust

ICR The Institute of Cancer Research

Institut Curie Anne Vincent-Salomon Francois-Clement Bidard Brigitte Sigal Arnaud Gauthier

