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Current genomics tools



Molecular subtypes of breast cancer
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First generation prognostic signatures
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First generation prognostic signatures are associated with chemotherapy response

Prognosis Good Intermediate Poor
Endo benefit High Undetermined Low
Chemo benefit Negligible Undetermined High

Fan et al. NEJM 2006: Sotiriou et al. INCI 2006; Reis-Filho & Puztai. Lancet 2011



15 years of microarray analysis

ER+ and ER- negative tumours
— Fundamentally different diseases

The outcome of ER-positive cancers can be
predicted by proliferation-related genes

The prognosis of ER-negative breast cancers is
determined by immune response-related genes

Microarrays did not result in ways to define the
best therapy for individual patients



Precision Medicine

The use of genomic, epigenomic, exposure,
and other data to define individual patterns

of disease, potentially leading to better
Individual treatment.

National Academy of Sciences (NAS), 2011



Breast Cancer Patient Management

“Precision medicine”-based breast cancer patient therapy
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Precision medicine is now possible

Development of targeted Massively Parallel
treatments Sequencing (NGS)

« Small molecule inhibitors ¢« Tumour genomes
|
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Metzker et al. Nat Rev Genet 2010



Genetic changes identified by NGS
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Oncogene ‘addiction’ as the basis for
predictive markers

Oncogene addiction:

“...cancer cells are often "addicted to" (that is,
physiologically dependent on) the continued
activity of specific activated or overexpressed
oncogenes for maintenance of their malignant
phenotype.”

|. Bernard Weinstein



Oncogene ‘addiction’

HER?Z2 amplification

Breast and gastric cancer

KIT mutation
Gastrointestinal stromal tumours

BCR-ABL fusion

Chronic myeloid leukaemias

EGFR mutations and/ or
amplification
NSCLC

EML4-ALK fusion
NSCLC

BRAF mutation (V600E)

Melanoma

\

Activated through
genetic hits
Inhibition Is

selectively lethal



Breast cancer massively
parallel sequencing analysis



Inter-tumour genetic heterogeneity
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Few highly recurrent mutations in breast

FIK3CA
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Distinct subtypes have different repertoires of mutations, but no
highly recurrently mutated gene is subtype specific

Predicted somatic non-silent mutations

M Truncation mutation

Missense mutation

Clinical data
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Few highly recurrently mutated driver genes...
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HER2 mutations
1.5% of breast cancers
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Have we found all drivers in breast cancers?

No. of tumour—normal pairs needed for
90% power in 90% of genes

Somatic mutation frequency (per Mb)

Rhabdoid Breast GBM Esophageal Melanoma
Medulloblastoma Meuroblastoma Multiple myeloma Endometrial adeno. Lung squamous
Acute myeloid leukemia CLL Cwarian Colorectal Lung adeno.
Carcinoid Prostate Kidney clear cell DLBCL Head and neck Bladder

Lawrence et al. Nature 2014



Exome analysis of 101 breast cancers
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Methods to identify significantly mutated genes in breast
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— ESR1 mutations
| * 0.6% of luminal tumours

| || — HER2 mutations
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And even when we believe we know the drivers...
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Intra-tumour genetic heterogeneity

@ Tracking heterogeneity/ bottlenecks

. Tumour sampling bias

' Drivers of heterogeneity

@ Drivers of disease — actionable mutations

Adapted from Swanton C, Cancer Res 2012



Intra-tumour genetic heterogeneity:
Darwinian evolution model

Selective pressure

—

Resistance to therapy
Metastasis

@ Tumour cell with mutation 1
o Tumour cell clone with mutations 1+2

‘ Tumour cell clone with mutations 1+3



HER?Z2 intra-tumour heterogeneity
2%-3% of HER2+ cancers

HER2 Immunohistochemistry Dual colour CISH -
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Somatic mutations associated with
HERZ2 intra-tumour heterogeneity
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MOSCATO trial: implementation of Next Generation
Sequencing in high volume phase | center

 Monocentric

« Target Accrual = 900 patients

FRESH TUMOR MOLECULAR SCREENING géglgéh TREATMENT
BIOPSY — PATHOLOGICAL CGH Array & NGS
CONTROL

Max 21 calendar days

Presented by: Antoine Hollebecque et al., ASCO 2013;
Courtesy Fabrice Andre



Patients included

— =
N=339 Screen Failure N=44 (13%)
ﬂf - - Clinical deterioration (++)
- Biopsy technically impossible (++)
- Withdraw consent (n=2)

Patients Biopsieil

NGS —> 90%
CGH + NGS— 80.5%

g N

Actionable Target No Actionable Target
N=127 (43.1%) N=168 (57%)

¢ &

Treatment matched No Treatment
to the Target N=62 (21%)

N=65 (22.0%)

Courtesy Fabrice Andre



Take Home Messages

Breast cancers display complex genomes
Few highly recurrently mutated genes

Large number of genes rarely mutated

No common denominator for each subtype
Highly recurrent drivers have been identified

Drivers of rare subtypes and of metastasis and
resistance yet to be fully characterised



Take home messages

 Not all drivers have been identified
— Drivers of metastatic disease
— Drivers of resistance to specific agents

* Beginning to understand
— Intra-tumour genetic heterogeneity



Approaches for the delivery of precision
medicine



Approaches for massively parallel
sequencing and therapy decision making

Whole genome sequencing
Targeted capture sequencing
Whole exome sequencing

Whole exome seguencing + RNA sequencing



How deep should we sequence In
clinical decision making?

« Higher depth — greater accuracy

« Mutations found in at least 10% of cancer cells
— Typical sample: approx 50% of tumour cell content
— At least 5 reads supporting a mutation

Pure sample Sample with 50% stroma Sample with 50% stroma
100% tumour cells 100% of tumour cells 10% of tumour cells

Heterozygous SNV Heterozygous SNV Heterozygous SNV
100x 50 reads 25 reads 2 — 3 reads
200x 100 reads 50 reads 5 reads

500x 250 reads 125 reads 12 — 13 reads



Whole genome seguencing

 All somatic genetic aberrations

— Mutation calls
e some uncertainty for SNVs
« still problematic for indels

— Fusion gene identification: not trivial
— Validation with orthogonal methods is required

 Still expensive
— Usually low depth: 30x to 100x

« Computer power and army of bioinformaticians



What are we trying to achieve?

» Targeted capture seguencing Is an
excellent option

e |If we believe that

— 1) breast cancers are driven by a limited
constellation of known driver mutations, fusion
genes and copy number aberrations

— 1) we can target the functional impact of each
mutation




Mutation signatures and genomic scars are not identified

Percentage of mutations
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Mutation signatures and genomic scars are not identified

Validated mutational signatures

© "o, <</?9 4 % %“
% S % 4 % & Y % %%
0. Z <, % Y% %
e, % O% 2, R %, %‘5}/0/’@ @/)Oo 0?9 £ %/5 O% Q Os@ .
) %, %, % /OLL % 7 o Yo Y%, %, 6b(, D, Y B, 1, %y R Dy K8
%, S B AR, B N L0, 2, s 0. B, % Ry @ P o B Do, P 0, W Y By, 05 B, G
Y, U, % S %, %, %, 9 %, %, s G, B, i O 0, 2 S0y, O, Oy, O O ey Py O Y, P, 0 %, Prevalence
RS G D T S TR % YT Y G Y R T e e T % e e T 0 % i oecer Probabie
OQUETRDEEO®WEROWOLEREEOEM®WEEGEEEREE®WEEEEI(E) samples association
Signature 1A @@ 11.7% Age
Signature 1B §E) 60.7% Age

Signature 2
Signature 3
Signature 4
Signature 5 9
Signature 6 (€D
Signature 7 e
Signature 8 (@)
Signature 9 e
Signature 10
Signature 11 @)
Signature 12 @)
Signature 13
Signature 14
Signature 15
Signature 16
Signature 17
Signature 18
Signature 19
Signature 20
Signature 21
Other

14.4% APOBEC

9.9%  BRCA1/2 mutations
12.1% Smoking

14.4%

2.6% DNA MMR deficiency
5.0%  Ultraviolet light
2.0%

0.6%  Immunoglobulin gene hypermutation
0.5%  Pol ¢ mutations
0.6%  Temozolomide
1.4%

2.2% APOBEC

0.1%

0.5%

1.1%

1.8%

2.2%

0.2%

0.5%

0.3%

13.6%

Mutational signature present O Total validated mutational signatures in a cancer type . Total cancer types in which a signature is operative




If we go with exome sequencing instead

Mutations in coding regions and some 3" and 5 UTRs

MAST1 and MAST? NOTCH1 and NOTCH2
Robinson et al. Nat Med 2011 Robinson et al. Nat Med 2011
[ ECh 1-341 ' Chr.9 ;43

1 264 3738 1 783 5738 : diesp
[2 NNes[zo]30[21]32[33[34]

( li:l ] 13! ]
~6% of all breast cancers ~25% of TNBCs

Fusion genes cannot be identified reliably



Whole exome + RNA seq

Tumor g  gEpesEm
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Genetic
Counseling Buccal swab
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Blood

Sequencing

Whole exome +
RNA seq

Analysis

Sequencing Tumor
Board

1) Actionable Results?
2) Incidental Results?

Genetic
Counselor

Disclosure of
Results

« Excellent approach, but...
 What do we do with the incidental findings?




Take Home Messages

« Seguencing for therapy decision making
— Dependent on the use intended

— For enrollment in clinical trials
« Targeted capture sequencing (including selected intronic regions)

— For patients in the metastatic setting after multiple lines
of therapy
» Targeted capture sequencing (including selected intronic regions)
« Exome + RNA seq

— Whole genome sequencing — unjustified at present



Breast Cancer Patient Management
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Precision medicine-based breast cancer patient therapy
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