Precision Medicine Based on Genomics in Breast Cancer

Kathleen Burke, PhD Bioinformatics Postdoctoral Fellow Laboratory of Dr. Jorge Reis-Filho

Memorial Sloan Kettering Cancer Center

Summary

• Current genomics tools

Precision medicine

- Massively parallel sequencing
- Delivery of precision medicine

Current genomics tools

Molecular subtypes of breast cancer

Additional molecular subtypes

- Claudin-low
 - approx 60-70% TN phenotypes
- Molecular subtypes of TNBC
 - Basal-like I, Basal-like II, Mesenchymal, Mesenchymal stem-like, Immunomodulatory, and Luminal androgen receptor (molecular apocrine)
- METABRIC subtypes
 - 10 subtypes

Perou et al, Nature 2000; Sorlie et al, PNAS 2001; Hu et al, BMC Genomics 2006; Parker et al. JCO 2009

First generation prognostic signatures ^{21 gene score} ^{70 gene signature} ^(Mammaprint)

Poor prognosis

Nodal status

High proliferation

Molecular grade index

Recurrence Score	≤18	>18 and <31	≥31
Prognosis	Good	Intermediate	Poor
Endo benefit	High	Undetermined	Low
Chemo benefit	Negligible	Undetermined	High

Fan et al. NEJM 2006; Sotiriou et al. JNCI 2006; Reis-Filho & Puztai. Lancet 2011

PAM50 ROR

EndoPredict

Genomic grade index

15 years of microarray analysis

- ER+ and ER- negative tumours
 - Fundamentally different diseases
- The outcome of ER-positive cancers can be predicted by proliferation-related genes
- The prognosis of ER-negative breast cancers is determined by immune response-related genes
- Microarrays did not result in ways to define the best therapy for individual patients

Precision Medicine

The use of genomic, epigenomic, exposure, and other data to define individual patterns of disease, potentially leading to better individual treatment.

Breast Cancer Patient Management

"Precision medicine"-based breast cancer patient therapy

Haber DA, Gray NS, Baselga J. Cell 2011

Precision medicine is now possible

Development of targeted treatments

- Small molecule inhibitors
- Monoclonal antibodies

Massively Parallel Sequencing (NGS)

• Tumour genomes

Metzker et al. Nat Rev Genet 2010

Genetic changes identified by NGS

Reference sequence

Oncogene 'addiction' as the basis for predictive markers

Oncogene addiction:

"...cancer cells are often "addicted to" (that is, physiologically dependent on) the continued activity of specific activated or overexpressed oncogenes for maintenance of their malignant phenotype."

I. Bernard Weinstein

Oncogene 'addiction'

- HER2 amplification Breast and gastric cancer
- *KIT* mutation Gastrointestinal stromal tumours
- BCR-ABL fusion
 Chronic myeloid leukaemias
- EGFR mutations and/ or amplification NSCLC
- EML4-ALK fusion
- BRAF mutation (V600E)
 Melanoma

Activated through genetic hits

Inhibition is selectively lethal

Breast cancer massively parallel sequencing analysis

Inter-tumour genetic heterogeneity

Shah et al. Nature 2009; Ding et al. Nature 2010; Natrajan et al. J Pathol 2012; Ellis et al. Nature 2012

Few highly recurrent mutations in breast cancer

Kan et al, Nature 2010; Stephens et al. Nature 2012

Distinct subtypes have different repertoires of mutations, but no highly recurrently mutated gene is subtype specific

	Predicted somatic non-silent mutations						T	rund	atio	n mu	utatic	n	Missense mutation				Clinical data									
Subtype	РІКЗСА	TP53	MAP3K1	MAP2K4	GATA3	MLL3	CDH1	PTEN	PIK3R1	AKT1	RUNX1	CBFB	ТВХ3	NCOR1	CTCF	FOXA1	SF3B1	CDKN1B	RB1	AFF2	NF1	PTPN22	PTPRD	8	HER2	- Z
Luminal A				_									-				: : : 				-					
Luminal B										-		-	-				-	-		-		-				
HER2- enriched												-														
Basal-like														•										_		

Nature 2012; Stephens et al, Nature 2012; Shah et al. Nature 2012; Ellis et al. Nature 2012; Banerji et al. Nature 2012

Few highly recurrently mutated driver genes...

HER2 mutations 1.5% of breast cancers

ESR1 mutations 0.6% of luminal cancers

cbioportal.org; TCGA Breast (provisional); n=962

Have we found all drivers in breast cancers?

Lawrence et al. Nature 2014

Exome analysis of 101 breast cancers

No driver genetic aberrations in a subset of breast cancers

Stephens et al. Nature 2012

Methods to identify significantly mutated genes in breast cancer focus on highly recurrently mutated genes

- Rare driver genes can be missed
 - ESR1 mutations
 - 0.6% of luminal tumours
 - HER2 mutations
 - Approx 1.5% of breast cancers

And even when we believe we know the drivers...

Courtesy Chuck Perou

Intra-tumour genetic heterogeneity

Tumour sampling bias

3 Drivers of heterogeneity

4) Drivers of disease – actionable mutations

Intra-tumour genetic heterogeneity: Darwinian evolution model

Selective pressure

Resistance to therapy Metastasis

-

Tumour cell clone with mutations 1+2

Tumour cell with mutation 1

Tumour cell clone with mutations 1+3

HER2 intra-tumour heterogeneity 2%-3% of HER2+ cancers

HER2 Immunohistochemistry

Dual colour CISH

Amplified

Somatic mutations associated with HER2 intra-tumour heterogeneity

Sample ID	Potential driver mutations present in both HER2-negative and HER2-positive components	Potential driver mutations restricted to the HER2-negative component	Potential drivers within regions whose amplification was restricted to the HER2- negative component
T1	<i>TP53</i> (P152L)		FAM83A, MDM4
T2	NP	NP	BRF2, FGFR1, ZNF703, RAB11FIP1, LSM1, DDHD2, WHSC1L1, PPAPDC1B, EEF1A2, ERLIN2, BAG4
ТЗ	<i>TP53</i> (E258D)	ATRX (splice site dinucleotide substitution)	YWHAZ, MYC, FAM83A
T4	ARID1A (R1446*)		BRF2, ZNF703, RAB11FIP1, ERLIN2
T5	<i>TP53</i> (E286D)	NP	IKBKB, CAMK1D
Т6	<i>TP53</i> (R273H), <i>PIK3CA</i> (H1047R)	HER2 (1767M), ETV5 (E60K)	PHGDH
Т8	PIK3CA (H1047R), CBFB (splice site)	BRAF (P403S), XRCC1 (S236F)	
Т9	<i>TP53</i> (R282G), <i>PIK3CA</i> (H1047R), <i>MAP2K4</i> (R110G), <i>MED12</i> (R2015M)		LMX1B
T10	<i>TP53</i> (S94fs)	NP	CBX3, RAD21
T11	TP53 (G187_E192delLAPPQ)	<i>NRP1</i> (R767H)	MYC, RAD21
T12	<i>TP53</i> (T195N), <i>KIT</i> (A755T)	FANCD2 (L1394F)	DSN1
T13	<i>TP53</i> (S240I)	NP	PIK3CA

MOSCATO trial: implementation of Next Generation Sequencing in high volume phase I center

- Monocentric
- Target Accrual = 900 patients

Presented by: Antoine Hollebecque et al., ASCO 2013; Courtesy Fabrice Andre

Courtesy Fabrice Andre

Take Home Messages

- Breast cancers display complex genomes
- Few highly recurrently mutated genes
- Large number of genes rarely mutated
- No common denominator for each subtype
- Highly recurrent drivers have been identified
- Drivers of rare subtypes and of metastasis and resistance yet to be fully characterised

Take home messages

- Not all drivers have been identified
 - Drivers of metastatic disease
 - Drivers of resistance to specific agents
- Beginning to understand
 - Intra-tumour genetic heterogeneity

Approaches for the delivery of precision medicine

Approaches for massively parallel sequencing and therapy decision making

- Whole genome sequencing
- Targeted capture sequencing
- Whole exome sequencing
- Whole exome sequencing + RNA sequencing

How deep should we sequence in clinical decision making?

- Higher depth greater accuracy
- Mutations found in at least 10% of cancer cells
 - Typical sample: approx 50% of tumour cell content
 - At least 5 reads supporting a mutation

	Pure sample 100% tumour cells Heterozygous SNV	Sample with 50% stroma 100% of tumour cells Heterozygous SNV	Sample with 50% stroma 10% of tumour cells Heterozygous SNV
100x	50 reads	25 reads	2 – 3 reads
200x	100 reads	50 reads	5 reads
500x	250 reads	125 reads	12 – 13 reads

Whole genome sequencing

- All somatic genetic aberrations
 - Mutation calls
 - some uncertainty for SNVs
 - still problematic for indels
 - Fusion gene identification: not trivial
 - Validation with orthogonal methods is required
- Still expensive
 - Usually low depth: 30x to 100x
- Computer power and army of bioinformaticians

What are we trying to achieve?

- Targeted capture sequencing is an excellent option
- If we believe that
 - i) breast cancers are driven by a limited constellation of <u>known</u> driver mutations, fusion genes and copy number aberrations
 - ii) we can target the functional impact of <u>each</u> mutation

Mutation signatures and genomic scars are not identified

Alexandrov et al. Nature 2013

Mutation signatures and genomic scars are not identified

If we go with exome sequencing instead

Mutations in coding regions and some 3' and 5' UTRs

MAST1 and MAST2 Robinson et al. Nat Med 2011

~6% of all breast cancers

NOTCH1 and *NOTCH2* Robinson et al. Nat Med 2011

~25% of TNBCs

Fusion genes cannot be identified reliably

Whole exome + RNA seq

- Excellent approach, but...
- What do we do with the incidental findings?

Take Home Messages

- Sequencing for therapy decision making
 - Dependent on the use intended
 - For enrollment in clinical trials
 - Targeted capture sequencing (including selected intronic regions)
 - For patients in the metastatic setting after multiple lines of therapy
 - Targeted capture sequencing (including selected intronic regions)
 - Exome + RNA seq

– Whole genome sequencing – unjustified at present

Breast Cancer Patient Management

Precision medicine-based breast cancer patient therapy

Acknowledgements

Breast Cancer Molecular Path Lab

Jorge Reis-Filho Britta Weigelt Charlotte Ng Raymond Lim Leticia de Mattos-Arruda Maria de Filippo Anne M Schultheis Salvatore Piscuoglio Luciano Martelotto Ino De Bruji Samuel Berman Huei-Chi Wen

Memorial Sloan Kettering Cancer Center