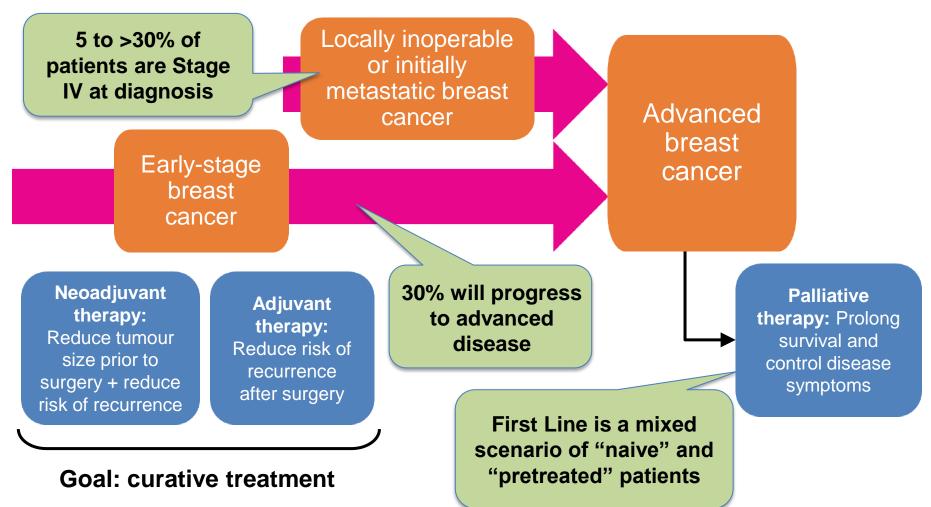
Optimizing therapy selection in ER[+] HER2[-] Advanced Breast Cancer

Dr Antonio Llombart-Cussac, MD, PhD

Medical Oncology Division

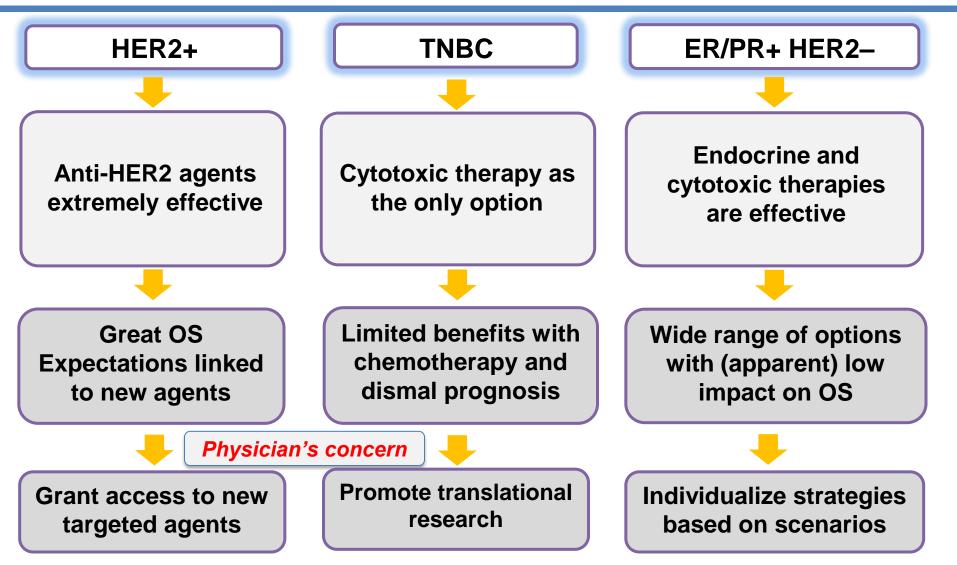

Hospital Arnau Vilanova, Valencia, Spain

Disclaimer

The contents herein have not been prepared by AstraZeneca Korea, and do not reflect any opinion or position of AstraZeneca Korea. This slide contains currently unapproved products and is presented for information sharing of pipeline and scientific discussion, not for promotion. AstraZeneca Korea can make no recommendation for an unlicensed use

P2016-0585[20180426]-V1.0C

Evolution of Breast Cancer Treatment



Senkus E, *et al. Ann Oncol* 2015;26 (Suppl. 5):v8–v30; O'Shaughnessy J. *Oncologist* 2005;10 Suppl. 3:20–29; Cardoso F, *et al. The Breast* 2014;23:489–502.

Goals in the Treatment of MBC ESMO/NCCN Guidelines

- Metastatic breast cancer is incurable yet treatable
- Treatment aims:
 - Maintain or improve quality of life
 - Delay disease progression
 - Control disease symptoms
- Treatment decision guided by tumour phenotype
- A large number of active agents combinations, but standard management still debatable
- Appropriate management supports goal of improving survival

In 2015 Molecular Phenotypes Drive Treatment Algorithms for ABC

International Treatment Guidelines Emphasise Endocrine Therapy for HR+/HER2– ABC

ASCO recommendations¹

Ε

E: El

or

N

Endocrine therapy, rather than chemotherapy, should be offered as the standard first-line treatment for patients with hormone receptor–positive advanced/metastatic breast cancer, except for immediately life threatening disease or if there is concern regarding endocrine resistance.

No mention to the potential superiority of

endocrine therapy in terms of activity

• The main benefit is less toxicity and better quality of life for the patient associated with endocrine therapy compared with

Women with recurrent or metastatic disease characterized by tumors that are ER- and/or PR-positive are appropriate candidates for initial endocrine therapy.

1. Partridge AH, *et al. J Clin Oncol* 2014;32:3307–3329; 2. Cardoso F, *et al. The Breast* 2014;23:489–502; 3. NCCN Guidelines: Breast Cancer. Version 3.2015.

is no

disease

Chemotherapy vs Endocrine Therapy Trials: Objective Response Rate

Study or subgroup	endocrine therapy	chemotherapy	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Goldenberg 1975	2/35	8/40	← ∎	7.0 %	0.29 [0.06, 1.26]
Clavel 1982	4/30	10/34		8.8 %	0.45 [0.16, 1.30]
Taylor 1986	33/95	43/99	-	39.3 %	0.80 [0.56, 1.14]
Tashiro 1990	14/26	10/30		8.7 %	1.62 [0.87, 3.00]
Dixon 1992	7/30	4/30		3.7 %	1.75 [0.57, 5.36]
ANZBCTG 1986	51/113	25/113		23.4 %	2.04 [1.37, 3.05]
Priestman 1978	20/45	10/47		9.1 %	2.09 [1.10, 3.96]
Total (95% CI)	374	393	•	100.0 %	1.25 [1.01, 1.54]
	rine therapy), 110 (chemoth				
Heterogeneity: $Chi^2 = 2$	2.66, df = 6 (P = 0.00092); l ²	- =/4%			
Test for overall effect: Z =	= 2.06 (P = 0.040)				
Test for subgroup differer	nces: Not applicable				

0.1 0.2 0.5 1 2 5 10

Favours endocrine Favours chemotherapy

Receptor status was mostly unknown in all studies

Wilcken N, et al. Cochrane Database Syst Rev. 2003;(2):CD002747.

Chemotherapy vs Endocrine Therapy Trials: Overall Survival

Study or subgroup	Endocrine therapy	Chemotherapy	Exp	Hazard Ratio Exp[(O- E)/V],Fixed,95%		Hazard Ratio Exp[(O- E)/V],Fixed,95%
	n/N	n/N	, <u>,</u>	CI		CI
Dixon 1992	18/30	14/30			5.8 %	0.76 [0.34, 1.66]
Tashiro 1990	23/30	24/26			10.5 %	0.76 [0.42, 1.36]
ANZBCTG 1986	95/113	100/113			47.1 %	0.85 [0.65, 1.12]
Taylor 1986	68/99	69/95			32.3 %	0.80 [0.58, 1.12]
Clavel 1982	17/34	16/30			4.3 %	1.61 [0.65, 4.00]
Total (95% CI) Heterogeneity: Chi ² = 2. Test for overall effect: Z = Test for subgroup different		0%	•		100.0 %	0.84 [0.70, 1.02]
5 1						
			0.1 0.2 0.5 1	2 5 10		
			Favours endocrine Fa	wours chemothe	erapy	

Receptor status was mostly unknown in all studies

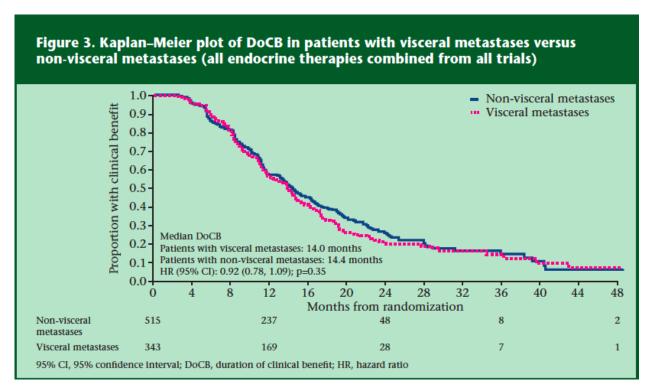
Treatment of "Rapidly Progressive Disease" ABC Recommendations

ER POSITIVE MBC¹

 Endocrine therapy (ET) is the preferred option for hormone receptor positive disease, even in the presence of visceral disease, unless there is concern or proof of endocrine resistance or there is disease needing a fast response (LoE: 1 A).

VISCERAL CRISIS²

• is defined as **severe organ dysfunction** as assessed by signs and symptoms, laboratory studies, **and rapid progression of disease**.


Visceral crisis is **not the mere presence of visceral metastases** but implies important visceral compromise leading to a clinical indication for a more rapidly efficacious therapy, particularly since another treatment option at progression will probably not be possible. (LoE: Expert opinion).

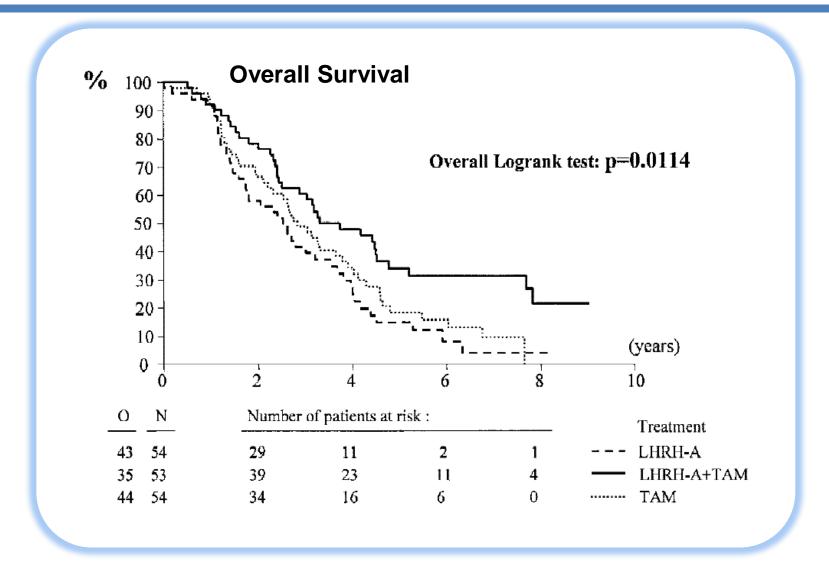
1. Cardoso F, et al. The Breast 2012;21:242–252;

2. Cardoso F, et al. The Breast 2014;23:489-502.

Visceral Metastases from HR+ MBC are not a Criteria for Endocrine Resistance

Combined analysis of four, Phase III, randomised controlled trials of 1st-line ET for ABC in postmenopausal women with available data on visceral vs. non-visceral metastases*

"ET for advanced/metastatic BC is as effective in responsive patients with visceral metastases as in those with non-visceral metastases."


DoCB, duration of clinical benefit *Similar results were observed from studies using tamoxifen only. Robertson JFR, *et al.* SABCS 2014 (Abstract P1-13-02).

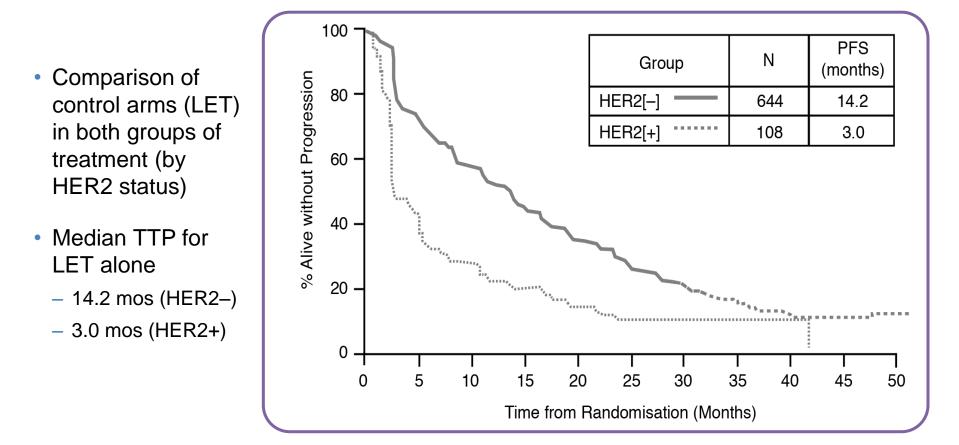
First Line Therapy HR[+] Metastatic Breast Cancer

Endocrine Sensitive

"De Novo" MBC Naïve MBC MBC > 1 year from the end of ET for EBC

EORTC Premenopausal: Survival Benefit for Ovarian Suppression and TAM

First-Line Therapy: Aromatase Inhibitors Showed Consistent Superiority over Tamoxifen (Postmenop)

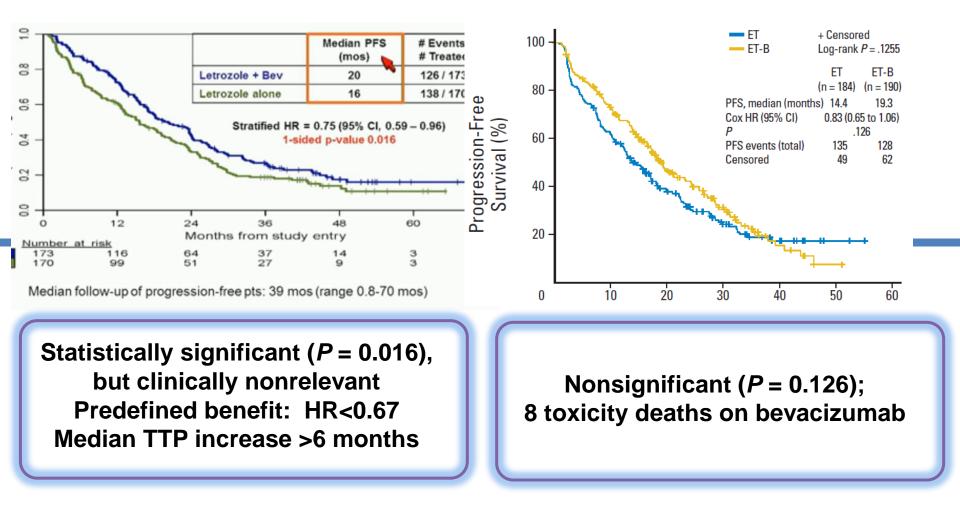


Mouridsen, *et al. Oncologist* 2004;4:489–496; Bonneterre, *et al. Cancer* 2001;92:2247–2258; Paridaens, *et al. J Clin Oncol* 2008;26:4883.

AI, aromatase inhibitor; TAM, tamoxifen.

HER2 Overexpression is a Strong Predictor of Endocrine Resistance Among ER+ ABC Patients

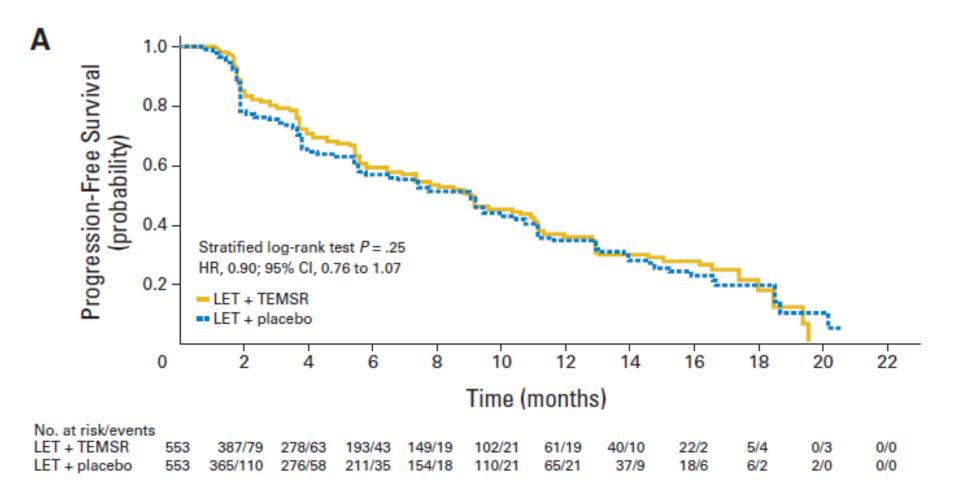
HER2, human epidermal growth factor receptor 2; LET, letrozole; mos, months; TTP, time-to-progression.

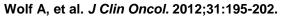

Adapted from Johnston S, et al. J Clin Oncol 2009;27:5538–5546.

Front-Line Aromatase Inhibitors Improving Efficacy Over the Last Decade

Letrozole single agent arm from recent Phase III trials for first-line ER+ MBC

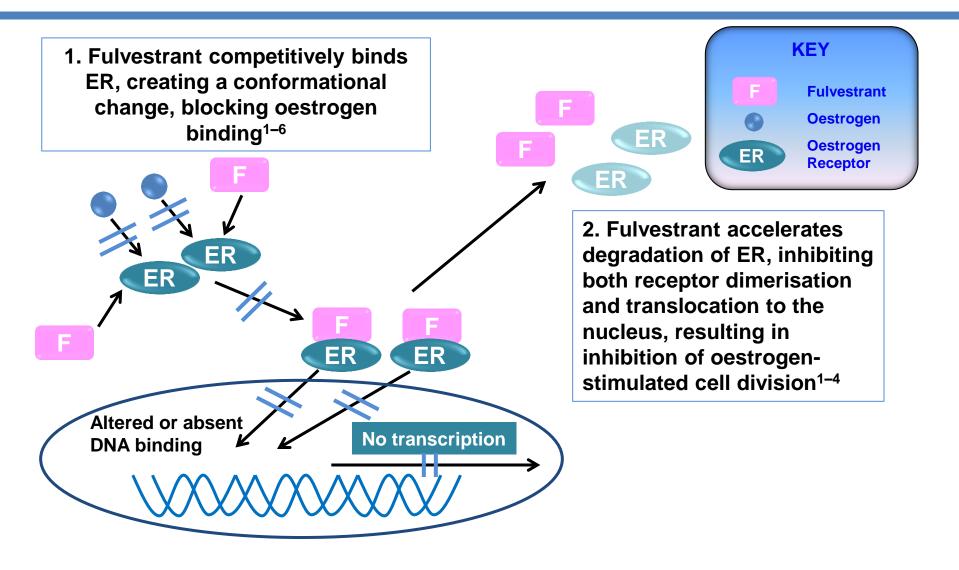
Letrozole single agent first-line trials	Year	Criteria	CBR (%)	TTP median (months)
Mouridsen	2004	ER+	50	9.4
Wolf	2012	ER+	_	9.0
Johnston	2009	ER+/HER2-	64	15.0
Martin	2015	ER+/HER2–	67	14.4
Dickler	2015	ER+/HER2–	62	16.0

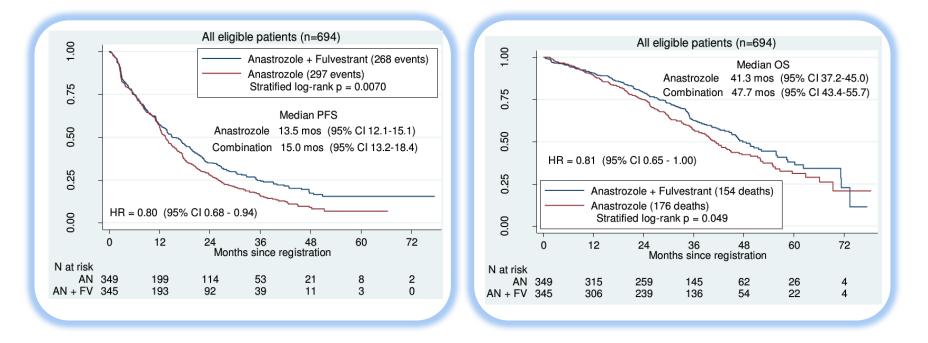

New Approaches: LET + Bevacizumab CALGB-40503 and GEICAM-LEA



ASO 2015

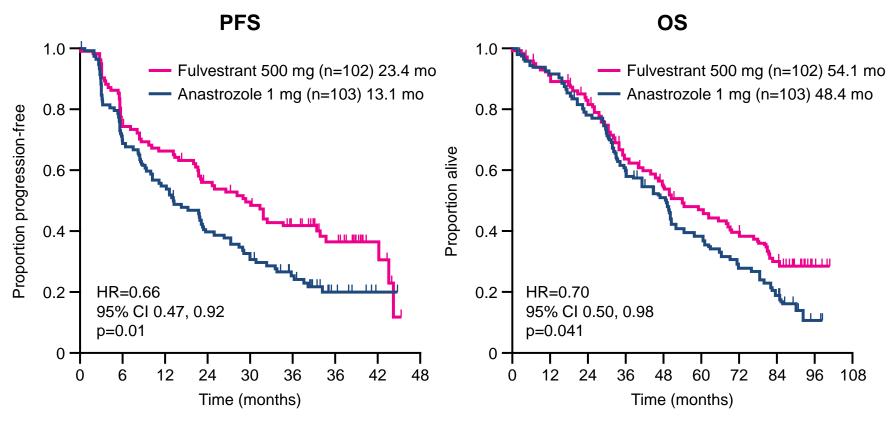
Martin M, et al. *J Clin Oncol.* 2015 [epub ahead of print]; Dickler MN, et al. ASCO 2015. Abstract 501.


Combination treatment: mTOR Inhibitors: Temsirolimus


Fulvestrant: The dual Mechanism of action may explain the delay (PFS gains) on resistance mechanisms

1. Osborne et al. Br J Can 2004; 2. Howell. Int J Gynecol Cancer 2006; 3. Wakeling. Endocr Relat Cancer 2000; 4. Carlson. Clin Breast Cancer 2005; 5. Dowsett et al. Breast Cancer Res Treat 2005; 6. Parker. Breast Cancer Res Treat 1993

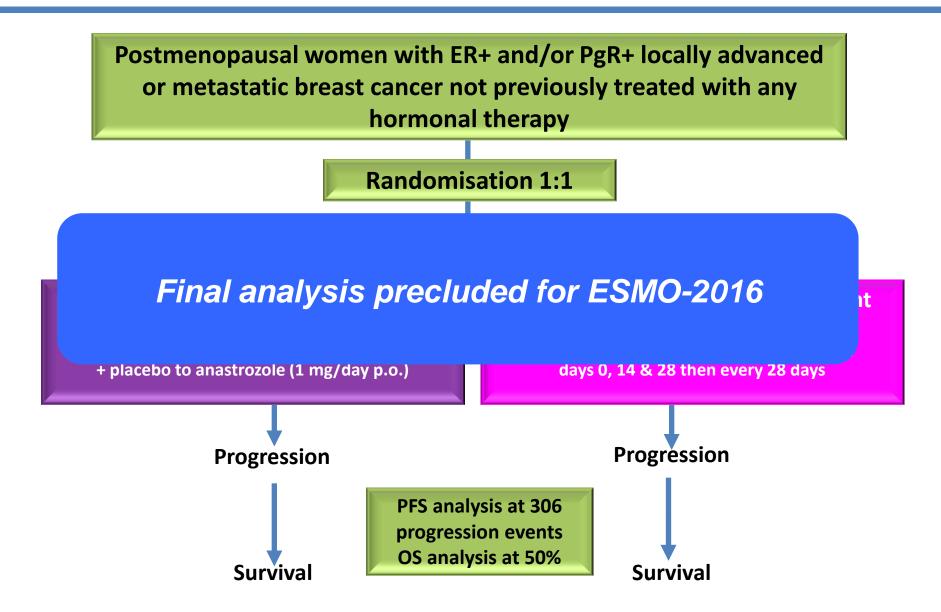
Combination treatment: SWOG S0226 Fulvestrant (250) and Anastrozole


- Phase III SWOG S0226 study
- Postmenopausal with inoperable IIIB or IV breast cancer ER/P+
- Measurable evaluable disease
- Primary objective: Progression-free survival (PFS)

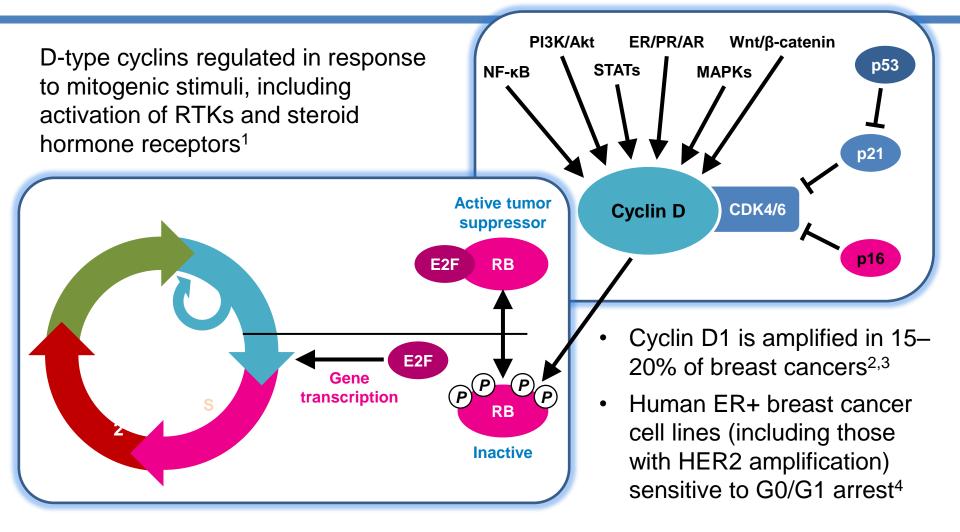
Fulvestrant is not approved in this setting. Please refer to the Summary of Product of Characteristics (SmPC) for all licensed indications. The SmPC is available from your local representative. Mehta RS, et al. *N Engl J Med*. 2012;367:435-444.

New Approaches: Phase II - FIRST Study Fulvestrant HD vs. Anastrozole

Postmenopausal patients with Stage IIIB or IV, ER/PR+ HER2– Primary Objective: CB (no differences)



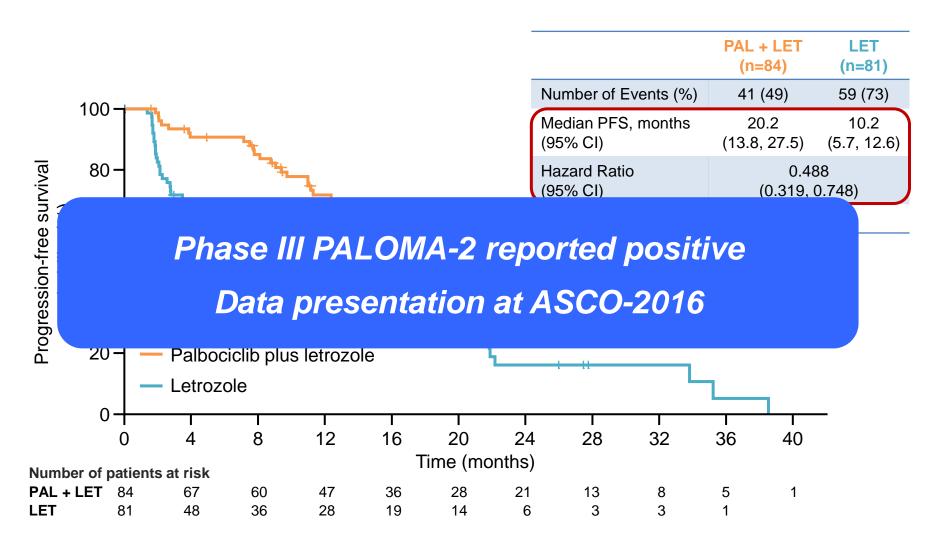
Fulvetrant is not approved in Korea


CB, clinical benefit; HD, high dose.

Bergh J, et al. J Clin Oncol 2012;30:1919–1925.

First Line Fulvestrant High Dose Phase III Registration Study

Cyclin D – Retinoblastoma cascade regulates the G1/S Checkpoint in Breast Cancer

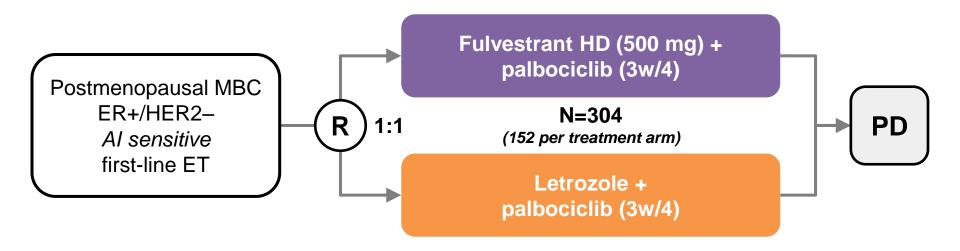


Lange et al. Endocrine-Related Cancer 2011;18:C19–C24; ¹Caldon CE, et al. J Cell Biochem 2006;97:261–274; ²Buckley MF, et al. Oncogene 1993;8:2127–2133; ³Dickson C, et al. Cancer Lett 1995;90:43–50; ⁴Finn RS, et al. Breast Cancer Res 2009;11:R77

CDK4/6 inhibitors currently in Phase III First Line

Agent	Company	Development Status	Trials Brand Name
Palbociclib (PD0332991)	Pfizer	Phase III	PALOMA-2
Ribocioclib (LEE011)	Novartis	Phase III	MONALEESA-2
Abemaciclib (LY28335219)	Lilly	Phase III	MONARCH-3

New approaches: Phase II – PALOMA-1 Palbociclib Front-Line: PFS (ITT Population)



PAL, palbociclib

Palbociclib is not approved in Korea

Finn RS, et al. Lancet Oncol 2015;16:25-35.

Palbociclib and Fulvestrant Front-Line: PARSIFAL Design

Stratification factors:

- Visceral disease
- Adjuvant Al

Primary Objective:

- 1-year PFS Rates
- Odds Ratio: 70% vs. 85%

Treatment of Aromatase Inhibitor-Resistant Disease

Aromatase inhibitors are first-line endocrine therapy for postmenopausal patients

Approximately 50% of ER+ patients do NOT respond to initial treatment

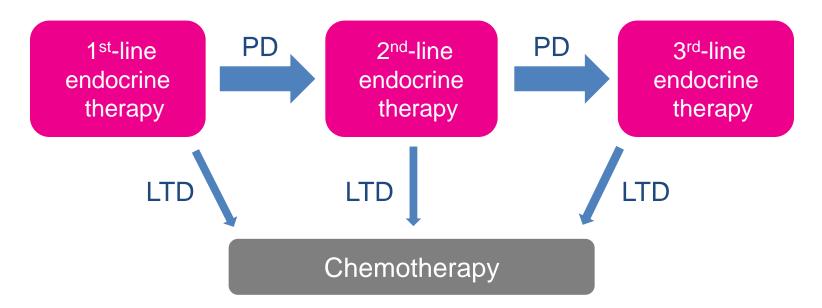
Even those who do respond to initial treatment will eventually progress "Optimal postaromatase inhibitor treatment is uncertain"

?

ER+, estrogen receptor positive.

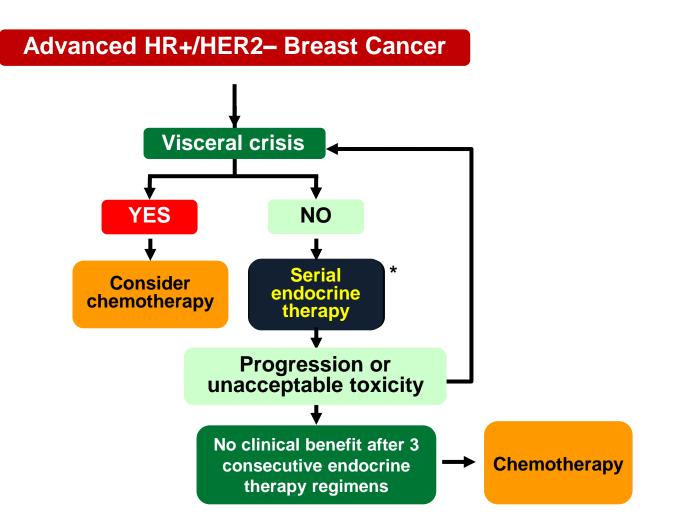
Normanno N, et al. *Endocr Rel Cancer.* 2005;12:721-747; NCCN Guidelines. Breast Cancer. Version 2012. NICE. CG81 Advanced breast cancer: Diagnosis and treatment. 2009. <u>http://publications.nice.org.uk/advanced-breast-cancer-cg81</u>; Cardoso F, et al. *Ann Oncol.* 2010;21(suppl 5): v15-v19; Cardoso F, et al. *Breast.* 2012;24:242-252.

Second Line Therapy – Progression to AI HR[+] Metastatic Breast Cancer


Endocrine Resistant

"De Novo" MBC Naïve MBC MBC > 1 year from the end of ET for EBC

When to Switch from Endocrine to Chemotherapy


"Chemotherapy should be reserved for cases of <u>rapidly progressive disease</u> or <u>proven endocrine-resistance</u>." – ESMO/ABC2 guidelines¹

"Endocrine therapy, rather than chemotherapy... except for immediately life threatening disease or if there is concern regarding endocrine resistance." – ASCO guidelines²

LTD, life threatening disease; PD, progressive disease. 1. Cardoso F, *et al. The Breast* 2014;23:489–502; 2. Partridge AH, *et al. J Clin Oncol* 2014;32:3307–3329.

NCCN Guidelines Recommend Serial Endocrine Therapy for HR+, HER2– ABC, Not in Visceral Crisis

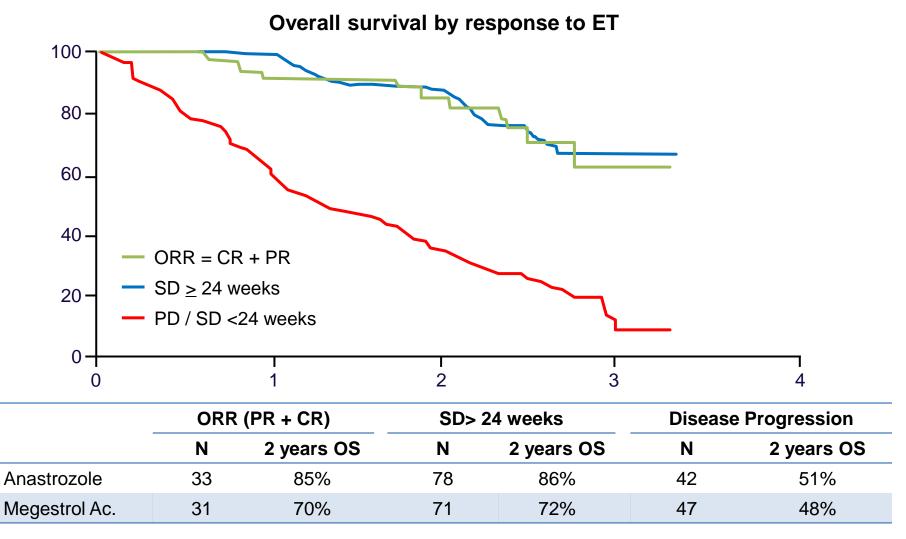
HER2, human epidermal growth factor receptor 2.

*Consider the addition of everolimus to exemestane in women who fulfill the entry criteria for BOLERO-2. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Breast Cancer. V.3.2014.

On progression to Front-Line Therapy How is Endocrine Resistance Defined?

Primary Endocrine Resistance is defined as:1

- Relapse while on the first 2 years of adjuvant ET, or
- PD within first 6 mos of initiating 1st-line ET for MBC, while on ET


Secondary (Acquired) Endocrine Resistance is defined as:

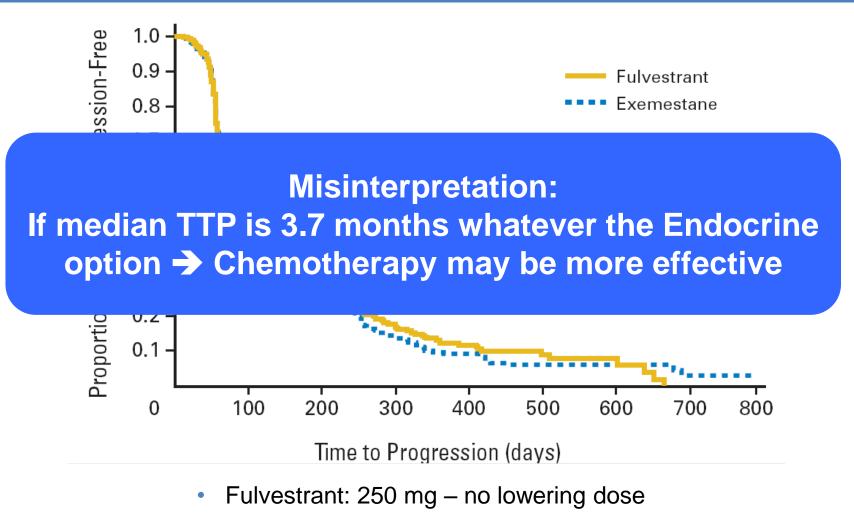
- Relapse while on adjuvant ET but after the first 2 years, or
- Relapse within 12 months of completing adjuvant ET, or
- PD ≥6 months after initiating ET for MBC, while on ET

ET resistance is a "progressive, step-wise process, and the underlying mechanism remains unclear."²

1. Cardoso F, *et al. The Breast* 2014;23:489–502; 2. Fan W, *et al. Future Med Chem* 2015;12:1511–1519.

Clinical Benefit Criteria: Prognostic Marker for Endocrine Treatment

Robertson JFR, Eur J Cancer 1997.


Clinical Benefit Criteria: Prognostic and Predictive Skill for Endocrine Treatment

 Clinical Benefit to the previous line of endocrine therapy seems the best predictor for new benefits on subsequent endocrine lines

Clinical Benefit on Prior Line	2 nd Line		3 rd	3 rd Line		4 th Line	
	Ν	CB (%)	N	CB (%)	Ν	CB (%)	
YES	68	69%	23	43%	5	20%	
NO	17	29%	9	22%	4	0	

• The absence of Clinical Benefit does not formally contraindicate new endocrine therapies, but closer follow-up seems reasonable

NSAI Resistant: EFECT Study Fulvestrant vs. Exemestane: Low Median TTP

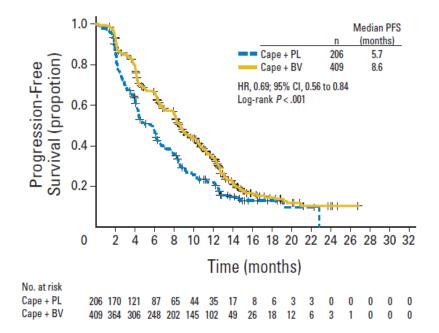
• 60% >2 prior endocrine lines

NSAI, non-steroidal aromatase inhibitor

Chia S, et al. J Clin Oncol 2008;26:1664–1670.

Historic Second Line Endocrine Therapy Phase III Results

Postmenopausal Patients Progressing on tamoxifen, letrozole or anastrozole


	LET	EXE	FULV 250
Control	MEG. AC	MEG. AC	EXE
HR PFS	1.04	0.82	0.96
p	NS	0.037	NS
Median PFS	3,8	4,8	3,7

LET, letrozole; EXE, exemestane; FULV 250, fulvestrant 250 mg; MEG AC, megestrol acetate

Dombernowsky et al. J Clin Oncol. 1998;16:453-61. Kaufmann et al. J Clin Oncol. 2000 Apr;18(7):1399-411. Chia et al. J Clin Oncol. 2008;26:1664-1670.

Efficacy of First-Line Chemotherapy in ER+/HER2–: Capecitabine (RIBBON I study)

		Capecitabine + PBO (n=206)
Median age		57.0 (23–88)
Sites of dis, %	Visceral	71.4
HR status, %	Positive	73.7

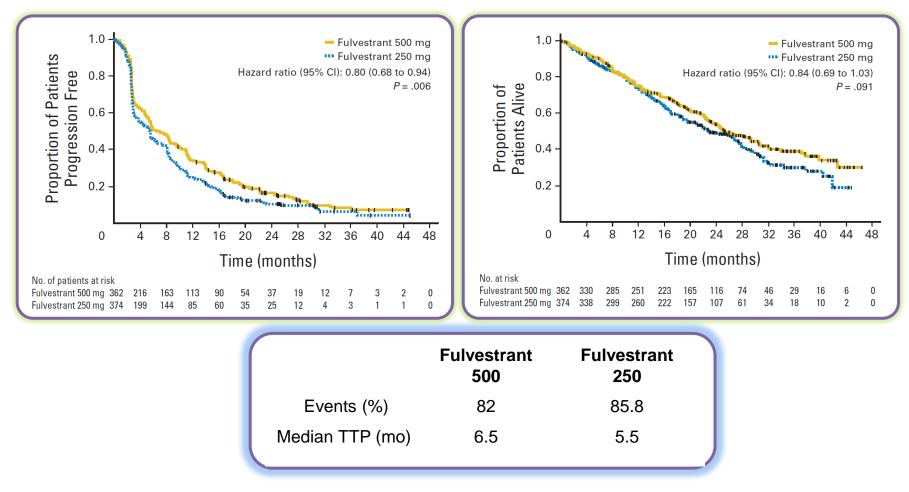
	Capecitabine + PBO (n=206)	Capecitabine + beva (n=409)
ORR, %	23.6	35.4
p value	0.0	097
CR, %	0.6	2.2
PR, %	23	33.2
CBR,%	Not assessed	Not assessed

Baseline risk factor	Capecitabine + PBO, median		
Hormone receptor			
Positive	458	6.2	
Negative	143	4.2	

How Are Physicians Treating ER+/HER2-?

№ ER+/		First-Line Treatment for ABC		Number of ET Lines Before First CT		
Analysis	··· _···	СТ	ET	1 Line	2 Lines	≥3 Lines
US ¹	19,120	40%	60%	44%	12%	4%
Europe ²	355	31%	69%	62%	7%	0%

Front-line endocrine therapy is chosen for 60%–70% of ER+ ABC patients

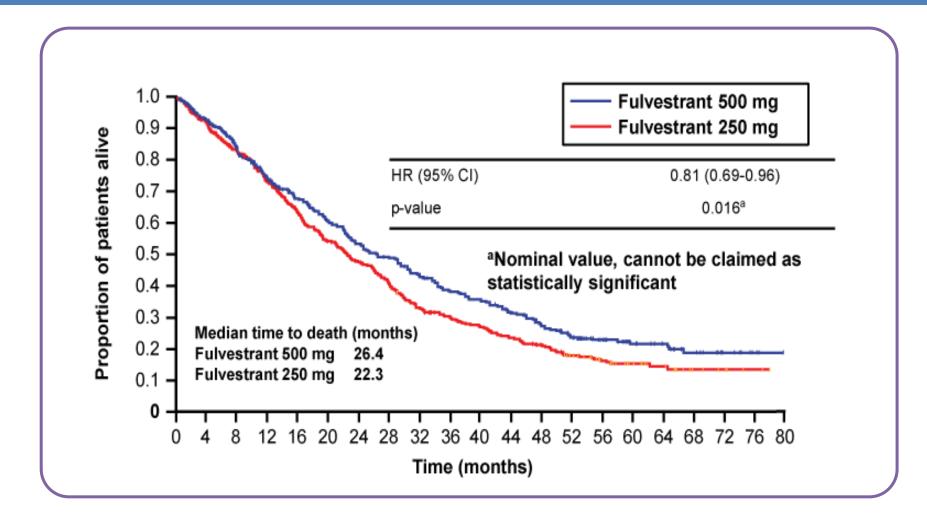

nessibly subortimal among US/European patients with ED1/UED2 ARC

Fewer than 1 out of 4 (25%) treated with front-line ET continue on a second endocrine option. Chemotherapy is the preferred option on progression to a first-line endocrine treatment

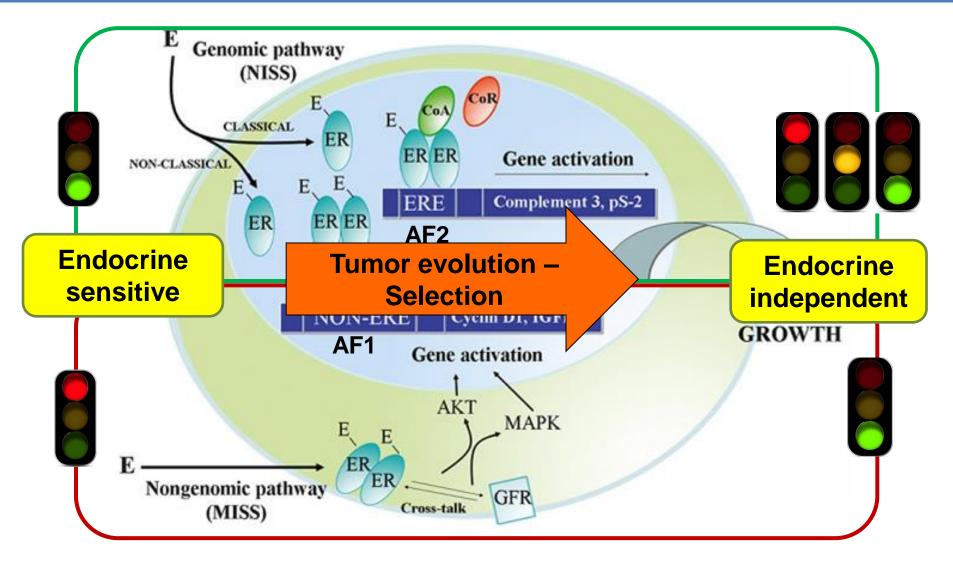
> 1. Swallow E, et al. Curr Med Res Opin 2014;30:1537–1545; 2. Andre F, et al. Curr Med Res Opin 2014;30:1007–1016.

CT, chemotherapy; HT, hormonal therapy.

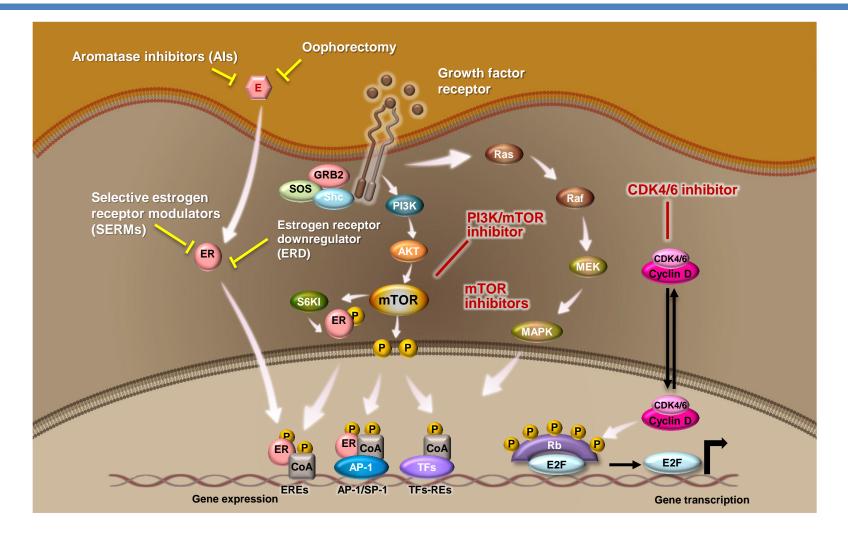

Second Line (AI Resistant): CONFIRM Fulvestrant HD (500) vs LD (250) – TTP (ITT)


• Similar toxicity profile

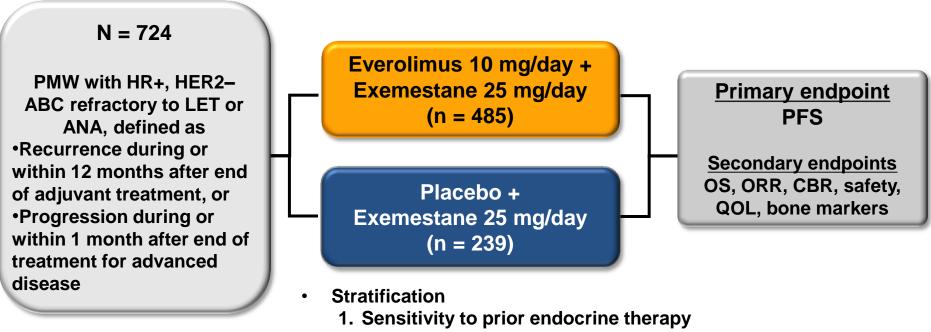
Di Leo A, et al. *J Clin Oncol*. 2010;28:4594-4600. Erratum in: *J Clin Oncol*. 2011;29:2293.


Second Line (AI Resistant): CONFIRM PFS by Predefined Covariates

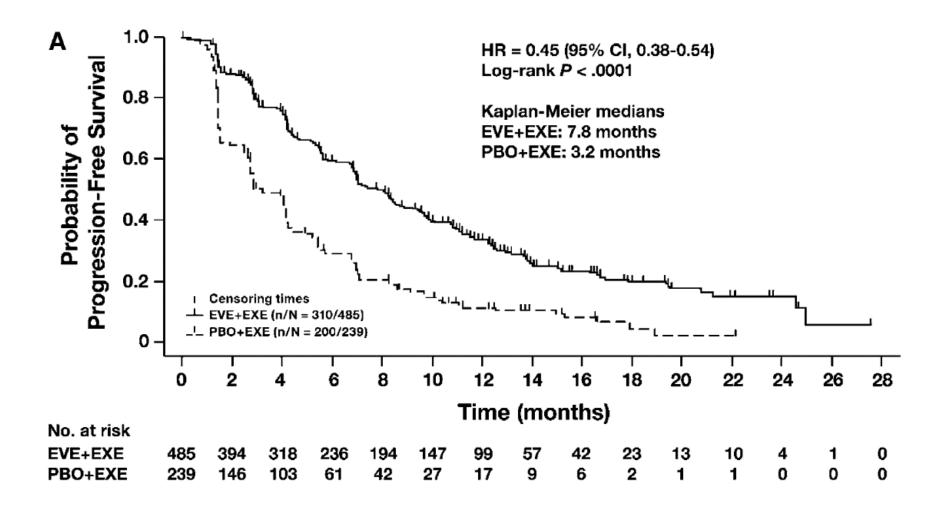
Second Line (AI Resistant): CONFIRM Long-term Benefits in OS (ITT)



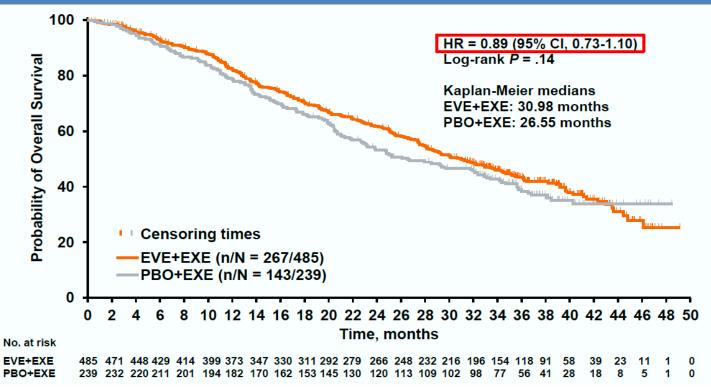
ER Signaling Pathways: Most Prevalent Mechanisms of Resistance to Al


Zilli M, et al. Biochim Biophys Acta. 2009;1795:62-81.

Endocrine and Targeted Therapies for HR+/HER2– Advanced Breast Cancer


Adapted from Yardley DA, et al. ASCO BC 2011. Abstract 268; Osborne CK, et al. Annu Rev Med. 2011;62:233-247; Yamnik RL, et al. J Biol Chem. 2009;284:6361-6369.

BOLERO-2: Phase III Exemestane ± Everolimus in Patients with ABC Progressing After NSAIs


- 2. Presence of visceral disease
- No crossover

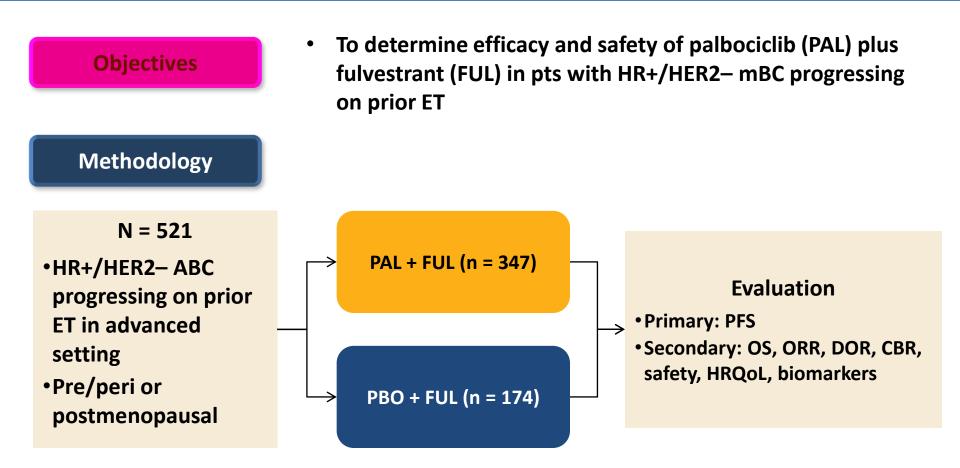
EVE + EXE More Than Doubled Median PFS-Final Analysis by Local Assessment

Yardley D, et al. Adv Ther. 2013;30(10):870-884.

EVE + EXE Demonstrated a 4.4-month Not Statistically Significant Improvement in OS at 39-month Final Analysis

- At 39 months' median follow-up, 410 deaths had occurred (data cutoff date: October 3, 2013)
- 55% of patients (n = 267) in the EVE + EXE arm
- 60% of patients (n = 143) in the PBO + EXE arm

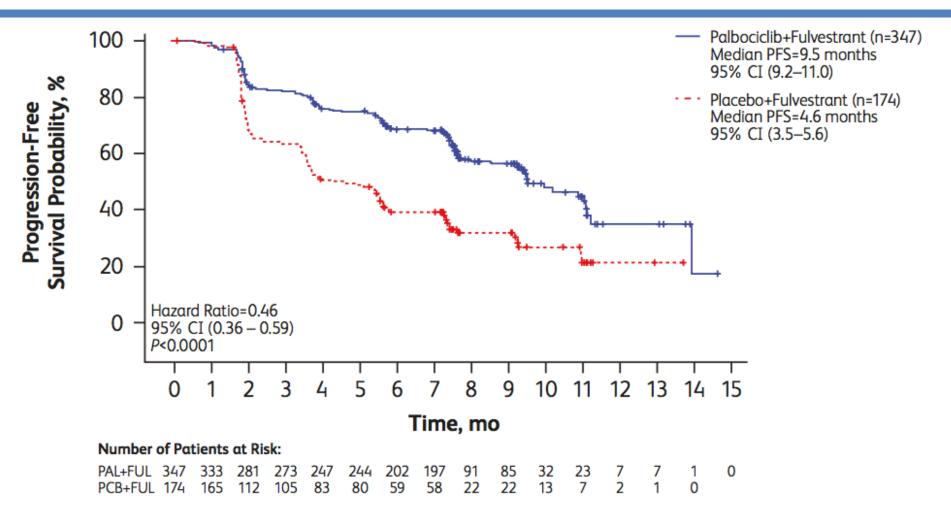
One-sided *P* value was obtained from the log-rank test stratified by sensitivity to prior hormonal therapy and presence of visceral metastasis from IXRS[®].


IXRS, Interactive Voice and Web Response System. Piccart M, et al. Ann Oncol. 2014;25:2357-2362.

BOLERO-2: Longer Median Time from Randomization to First Chemotherapy or Death for EVE + EXE vs PBO + EXE

Time from Randomization to First Chemotherapy or Death	Everolimus + Exemestane (n = 485)	Placebo + Exemestane (n = 239)
Number of events, n (%)	366 (75.5)	192 (80.3)
Chemotherapy	257 (53.0)	150 (62.8)
Death	109 (22.5)	42 (17.6)
Number censored, n (%)	119 (24.5)	47 (19.7)
Discontinued from study	105 (21.6)	45 (18.8)
Ongoing at data cutoff ^a	14 (2.9)	2 (0.8)
Time from randomization to first o	chemotherapy or death, n	nonths
25th percentile (95% CI)	5.68 (5.03-6.57)	3.06 (2.53-3.48)
Median (95% CI)	11.86 (10.45-13.08)	5.98 (5.09-7.39)
75th percentile (95% CI)	25.10 (22.97-28.06)	14.16 (10.74-18.50)

^aOngoing without any chemotherapy by the cutoff date. Piccart M, et al. *Ann Oncol.* 2014;25(12):2357-62.


PALOMA-3: Phase III Trial of FUL ± PAL in Women with HR+/HER2– MBC Progressing on Prior ET

ABC, advanced breast cancer; CBR, clinical benefit rate; DOR, duration of response; ET, endocrine therapy; FUL, fulvestrant; HRQoL, health related quality of life; MBC, metastatic breast cancer; ORR, objective response rate; OS, overall survival; PAL, palbociclib; PFS, progression free survival.

Turner NC, et al. ASCO 2015. Abstract #LBA502.

Paloma 3: PALBO-FULV vs. FLV 500 PFS población global (ITT)

FUL=fulvestrant; PAL=palbociclib; PCB=placebo; PFS=progression-free survival. *Investigator-assessed.

Palbociclib is not approved in Korea

Second Line Endocrine Therapy Phase III Results

Postmenopausal Patients Progressing on tamoxifen, letrozole or anastrozole

	LET	EXE	FV LD	FV HD	EXE + RAD	FVHD + PALBO
Control	MEG. AC	MEG. AC	EXE	FV LD	EXE	FV HD
HR PFS	1.04	0.82	0.96	0.80	0.43	0.42
p	NS	0.037	NS	0.006	<0.00001	<0.00001
Median PFS	3,8	4,8	3,7	6,5	7,8	9,2

LET, letrozole; EXE, exemestane; FVLD, fulvestrant 250 mg; FVHD, fulvestrant 500 mg; RAD, everolimus; PALBO, palbociclib; MEG AC, megestrol acetate Dombernowsky et al. J Clin Oncol. 1998;16:453-61. Kaufmann et al. J Clin Oncol. 2000 Apr;18(7):1399-411. Chia et al. J Clin Oncol. 2008;26:1664-1670. Di Leo A et al. J Clin Oncol 2010; 28: 4594-4600. Yardley D et al. Adv Ther. 2013; 30(10):870-884

Face-to-Face: CONFIRM vs PALOMA-3 vs BOLERO-2

All studies had the same indication, but not the same population

Percentage	CONFIRM	PALOMA-3	BOLERO-2
Progression on AI	65	85	100
Benefit to prior line of ET	NK	79	85
Prior chemotherapy for ABC	NK	31	24
1 st – 2 nd ABC line of therapy	100	62	61
Dose intensity	98	91	78
Discontinuations	2,3	2,5 (SAE related)	6.5 + 6.7*
PFS HR	0.80	0.42	0.45

*Includes treatment discontinuations and consent withdrawal.

CONFIRM / Fulvestrant Toxicity profile

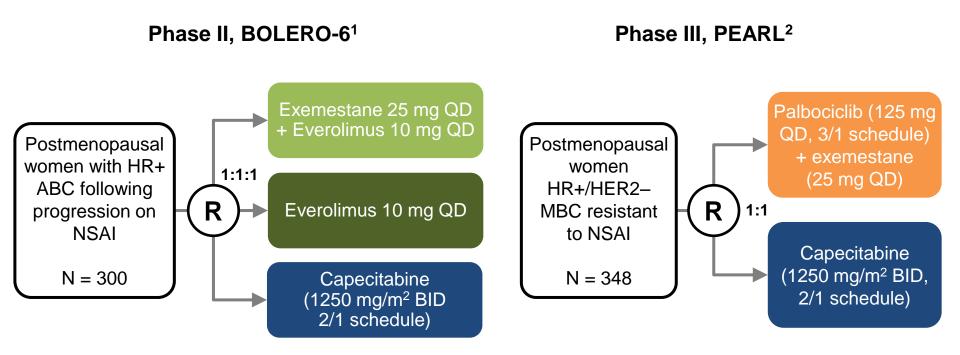
	N (%) p	P-value	
	Fulvestrant 500mg N=361	Fulvestrant 250mg N=374	-
Endometrial dysplasia	0	0	
GI disturbances	73 (20.2)	76 (20.3)	1.000
Hot flushes	30 (8.3)	23 (6.1)	0.318
Injection site reactions	49 (13.6)	50 (13.4)	1.000
Joint disorders	68 (18.8)	70 (18.7)	1.000
Osteoporosis	1 (0.3)	0	0.492
Thromboembolic events	3 (0.8)	6 (1.6)	0.506
Urinary tract infection	8 (2.2)	8 (2.1)	1.000
Vaginitis	3 (0.8)	1 (0.3)	0.366
Weight gain	1 (0.3)	1 (0.3)	1.000

BOLERO-2 / Everolimus Toxicity profile

	EVE + EXE (n = 482), %				
		Grade			
AE (Preferred Term)	All	1	2	3	4
Stomatitis	59	29	22	8	0
Rash	39	29	9	1	0
Fatigue	37	18	14	4	<1
Diarrhoea	34	26	6	2	<1
Nausea	31	21	9	<1	<1
Decreased appetite	31	19	10	1	0
Weight decreased	28	10	16	2	0
Cough	26	21	4	1	0
Pneumonitis*	16	7	6	3	0
Hyperglycaemia*	14	4	5	5	<1

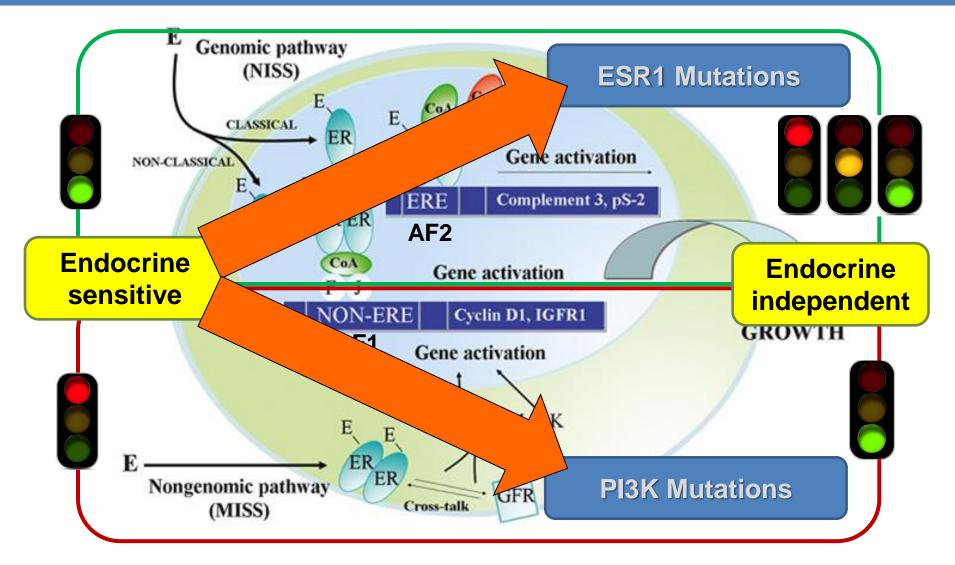
*Incidence <25%, but AE of special interest. Yardley D, et al. *Adv Ther.* 2013;30(10):870-884.

PALOMA-3 / Palbociclib Adverse Events—All Cause

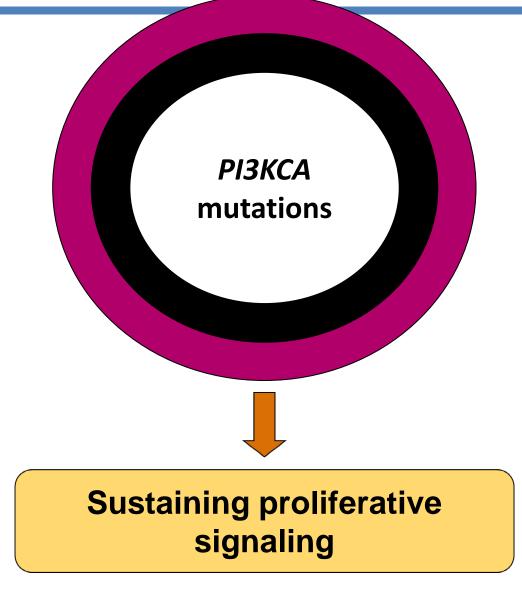

AE, %	Palboc	Palbociclib + Fulvestrant (n=345)			Placebo + Fulvestrant (n=172)		
	Any Grade	Grade 3	Grade 4	Any Grade	Grade 3	Grade 4	
Any AE	98	59	11	89	16	2	
Neutropenia	79	53	9	3	0	1	
Leukopenia	46	25	1	4	0	1	
Anemia	26	3	0	10	2	0	
Thrombocytopenia	19	2	1	0	0	0	
Fatigue	38	2	0	27	1	0	
Nausea	29	0	0	26	1	0	
Headache	21	<1	0	17	0	0	
Upper respiratory infection ^a	19	<1	0	16	0	0	
Diarrhea	19	0	0	17	1	0	
Constipation	17	0	0	14	0	0	
Alopecia	15	0	0	6	0	0	

AE=adverse event. AEs with ≥15% incidence in the palbociclib + fulvestrant group reported.

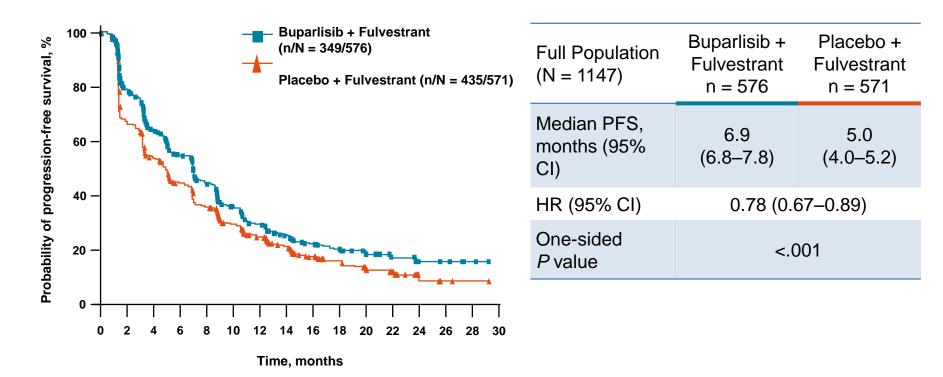
Palbociclib is not approved in India


Turner NC, et al. N Engl J Med. 2015;373:209-219 Turner NC, et al. ASCO 2015 (Abstract LBA502)

Other Options After NSAI: Phase II–III Trials Face-to-Face – Endocrine Therapy vs Capecitabine


Clinicaltrials.gov NCT01783444;
Clinicaltrials.gov NCT02028507.

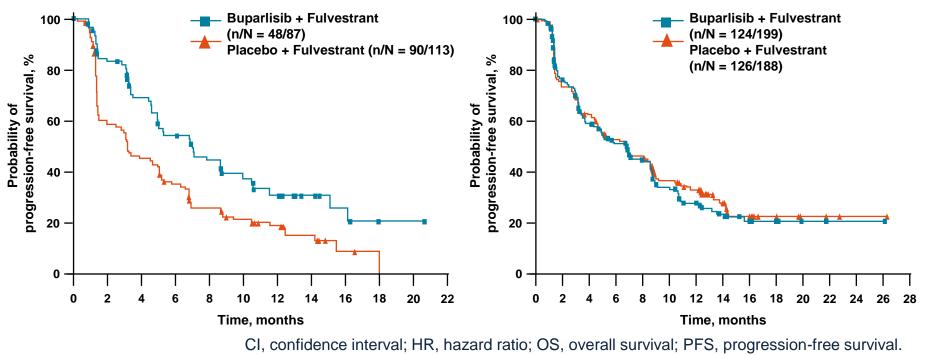
ER Signaling Pathways: Most Prevalent Mechanisms of Resistance to Al



Zilli M, et al. Biochim Biophys Acta. 2009;1795:62-81.

Acquired Resistance

BELLE-2 Met the Primary Endpoint for PFS Improvement in the Full Population


- A similar PFS improvement was observed in the main population (HR 0.80 [95% CI, 0.68–0.94]; one-sided P value = .003)
- Follow-up for OS analysis is ongoing, with a prespecified target of 588 deaths in the full population
 - At the time of primary PFS analysis, OS data were immature (281 deaths in the full population), with a trend in favor of the buparlisib arm

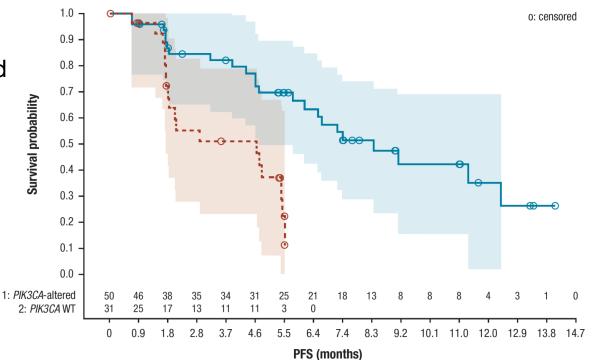
CI, confidence interval; HR, hazard ratio; OS, overall survival; PFS, progression-free survival. Baselga J, et al. SABCS 2015. Poster S6-01.

Buparlisib + Fulvestrant: Clinically Meaningful PFS Improvement in Patients with ctDNA *PIK3CA* Mutations

ctDNA <i>PIK3CA</i> Mutant n = 200	Buparlisib + Fulvestrant n = 87	Placebo + Fulvestrant n = 113
Median PFS, months (95% CI)	7.0 (5.0–10.0)	3.2 (2.0–5.1)
HR (95% CI)	0.56 (0.3	39–0.80)
One-sided nominal <i>P</i> value	<.0	01

ctDNA <i>PIK3CA</i>	Buparlisib +	Placebo +
Nonmutant	Fulvestrant	Fulvestrant
n = 387	n = 199	n = 188
Median PFS, months	6.8	6.8
(95% CI)	(4.7–8.5)	(4.7–8.6)
HR (95% CI)	1.05 (0.8	32–1.34)
One-sided nominal <i>P</i> value	.64	42

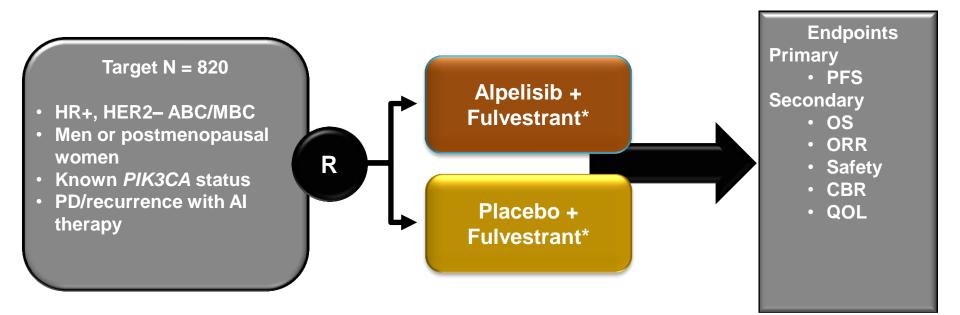
Baselga J, et al. SABCS 2015. Poster S6-01.


Alpelisib + Fulvestrant Activity in Patients with ABC Harboring Mutant or Wildtype *PIK3CA*

- Alpelisib + Fulvestrant 500 mg demonstrated encouraging clinical activity across dose levels
- Patients with *PIK3CA*-altered tumors had better response vs WT
 - Increased ORR (not shown)
 - Longer PFS benefit

	Median PFS (months)	95% CI (months)	Total number, n	Number censored, n (%)
PIK3CA-altered	8.3	6.1–12.4	50	27 (54.0)
PIK3CA WT	4.7	1.8–5.5	31	13 (41.9)

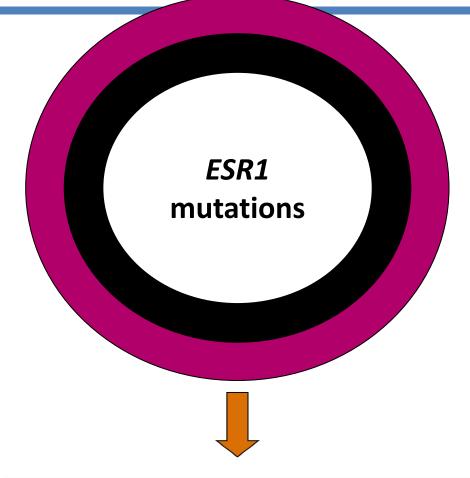
Treatment group (QD)


PIK3CA-altered
PIK3CA WT

ABC, advanced breast cancer; CI, confidence interval; ORR, overall response rate; PFS, progression-free survival; PIK3CA, phosphoinositide 3-kinase, catalytic, alpha; QD, once daily; WT, wildtype. Reprinted from Janku F, et al. SABCS 2014. Abstract PD5-5 (poster presentation); www.clinicaltrials.gov (NCT01219699).

SOLAR-1: Alpelisib + Fulvestrant Treatment in ABC Following AI Therapy

SOLAR-1 (NCT02437318)¹: Phase III randomized, double-blind, placebo-controlled study



Enrollment began July 2015; study is currently enrolling

ABC, advanced breast cancer; AI, aromatase inhibitor; CBR, clinical benefit rate; HER2, human epidermal growth factor receptor-2; HR, hormone receptor; IM, intramuscular; MBC, metastatic breast cancer; ORR, overall response rate; PD, progressive disease; PFS, progression-free survival; PIK3CA, phosphoinositide 3-kinase, catalytic, alpha; PO, oral; QOL, quality of life. *Alpelisib or placebo (300 mg; PO; once daily); fulvestrant (500 mg; IM; Day 1 and Day 15 of Cycle 1, then Day 1 of each subsequent 28-day cycle).

1. <u>www.clinicaltrials.gov</u> (NCT02437318).

Acquired Resistance

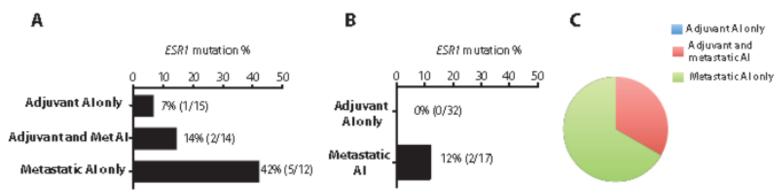
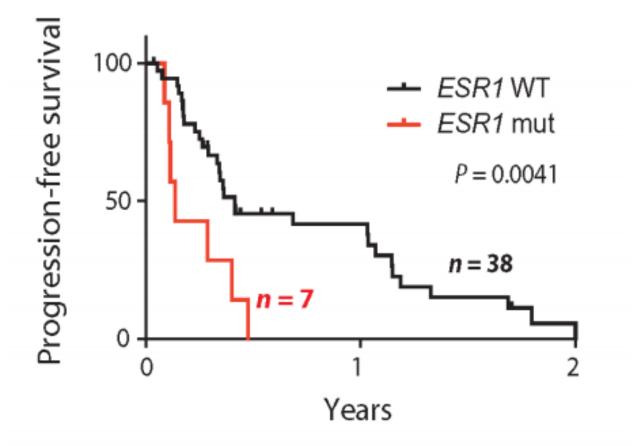
Signaling independent of estrogen stimulation-inhibition

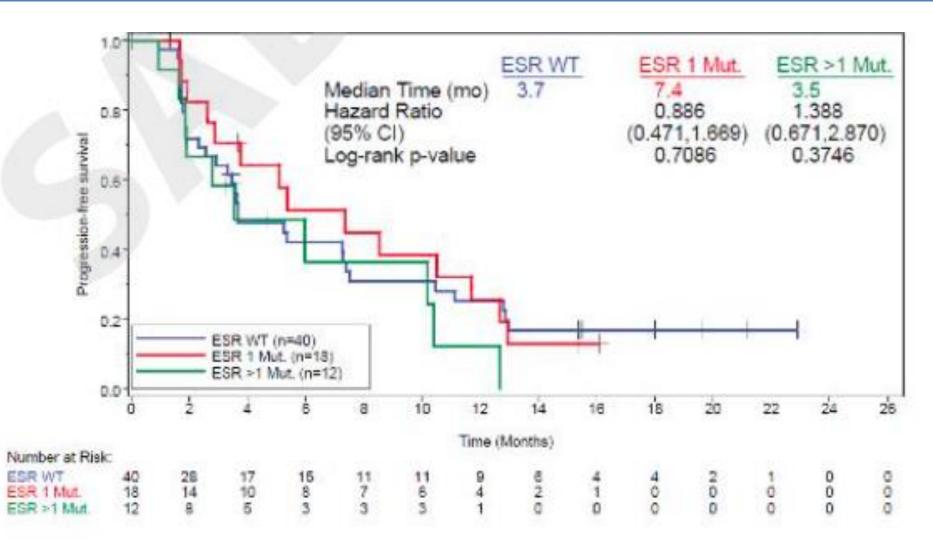
ESR1 Mutations in Metastatic Breast Cancer

Mutations of the ER gene (ESR1 mutations) have recently been identified as a causative factor for the development of endocrine resistance

ESR1 mutations are only rarely found in primary breast cancer and are only found at an appreciable frequency after the development of hormone resistance

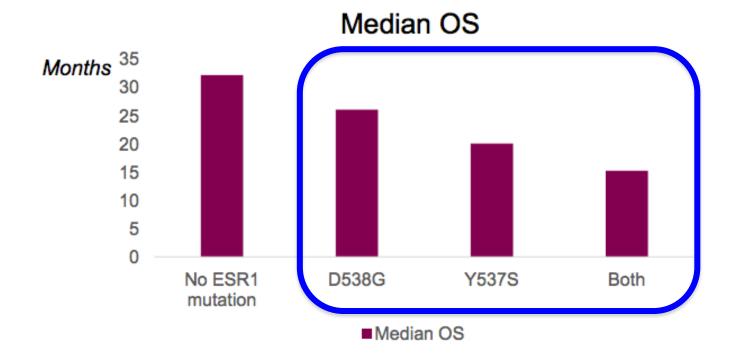
Most of the ESR1 mutations occur in a hotspot within the ligand binding domain (LBD), and constitutively activate the ER in a ligand independent manner

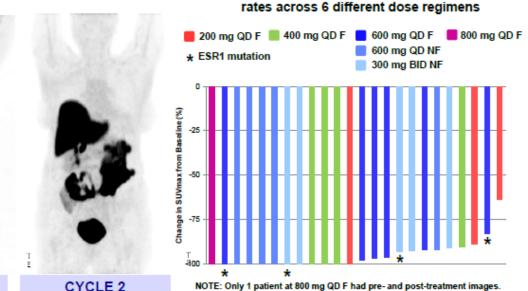

Fig. 4. Validation and independent series confirm the importance of timing of previous AI exposure for *ESR1* mutation selection. (A) *ESR1* mutation rate assessed only in patients with detection of a mutation other than *ESR1* in plasma DNA. P = 0.061, χ^2 test overall; P = 0.035, adjuvant AI only versus metastatic AI only. (B) Assessment of *ESR1* mutation rate in an independent series of 49 breast tumor biopsies that had recurred after previous AI therapy. No *ESR1* mutations were identified in breast tumor biopsies relapsing after adjuvant AI (0%; 95% Cl, 0 to 10.9). (C) Reassessment of a second independent series of *ESR1* mutant–positive cancers, with timing of previous AI therapy (9).

ctDNA ESR1 Mutations: Potential Mechanism of Resistance to Aromatase Inhibitors

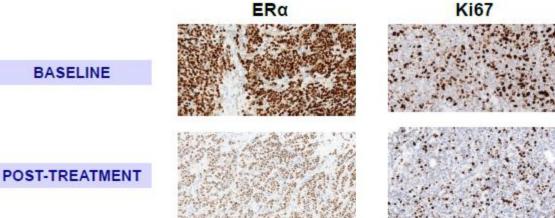
PFS on AI therapy after ctDNA analysis for patients with ESR1 mutant and WT ctDNA (HR, 3.1; 95% Cl, 1.9 to 23.1; P = 0.0041, log-rank test).



ctDNA ESR1 Mutations: Not a Resistant Mechanism for Fulvestrant (FERGI Trial)


BOLERO-2: ESR1 Mutations and Overall Survival

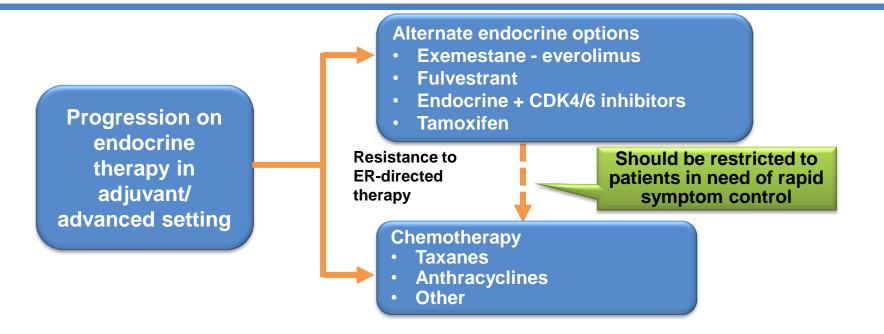
- Cell free DNA samples analysed from 541 of the 724 women in BOLERO2
- Almost 30% tested positive for ESR1 mutations (D538G and Y537S)


Phase I Study of ARN-810 (GDC-0810), a Novel and Potent Oral Selective Estrogen Receptor Degrader, in Postmenopausal Women with Metastatic Estrogen Receptor Positive (ER+), HER2- Breast Cancer

Aditya Bardia,¹ Maura N Dickler,² Ingrid A Mayer,³ Eric Winer,⁴ Umar Mahmood,¹ Gary Ulaner,² H Charles Manning,³ Peter Rix,⁵ Jeffrey H Hager,⁵ Debasish Roychowdhury,⁵ Edna Chow Maneval,⁵ Carlos L Arteaga,³ and Jose Baselga² ¹Massachusetts General Hospital Cancer Center, Boston, MA; ²Memorial Sloan-Kettering Cancer Center, New York, NY; ³Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN; *Dana Farber Cancer Institute, Boston, MA; *Seragon Pharmaceuticais, a wholly owned subsidiary of Genentech, Inc., San Diego, CA

NOTE: Only 1 patient at 800 mg QD F had pre- and post-treatment images. No images were collected for the 100 mg QD dose cohort and post-treatment scans had not yet been performed for the 800 mg QD NF and 400 mg BID NF cohorts at the time of data cutoff. All patients treated at 600 and 800 mg QD had FES-PET scans performed between 18 and 24 hours post-dose.

Waterfall plot showing FES-PET response



(treated at 600 mg QD F)

BASELINE

(ESR1 mutation patient)

Conclusions

NCCN ¹	ABC1 ²
Recommend 3 consecutive endocrine therapy regimens before switching to chemotherapy	No consensus following initial AI therapy; options include • Tamoxifen • Another AI • Fulvestrant • Megestrol acetate

Als, aromatase inhibitors; ER, estrogen receptor; HR, hormone receptor; NCCN, National Comprehensive Cancer Center.
Guidelines refer to postmenopausal HR+ advanced breast cancer, and recommend endocrine therapy for patients who are not in visceral crisis.
1. NCCN Guidelines. Breast Cancer. Version 2.2012; 2. Cardoso F, et al. *Breast*. 2012;21:242-252.

Endocrine-Resistant ER+/HER2_ABC: Treatment Decision Guided by Patient Scenario

PROFILE C

Low visceral

СТ

PROFILE D

Moderate visceral

PROFILE E

Medical

crisis stage

aggressive disease

endocrine therapy

immediate medical

Highly symptomatic,

requiring systemic

Mets in high-risk

sites requiring

intervention

treatment

Fast-progressing,

life-threatening,

Resistant to

nonvisceral disease nonvisceral disease burden burden · Long DFI post- Short DFI (eq, <12) Good or moderate Moderate response to prior endocrine adjuvant Rx (eg, >12 mo) or recurrence response to prior while on adjuvant Rx endocrine therapy* mo) or long therapy* response to 1L ET or moderate Increased risk due to Lower risk due to Rx (eg, >12 mo) response to 1L ET lower tumor burden greater disease Rx (eg,~6 mo) Predominantly bone-(eg, discrete 1-2 burden · Predominantly bonemet[s]) only mets More extensive only mets No or minimal visceral met(s) Possible low-risk Possible low-risk symptoms soft tissue mets (eq. Minimal/moderate soft tissue mets (eq. skin/lymph) skin/lymph) Asymptomatic No or minimal symptoms **Patient Factors** EVE (Palbo?) Chemotherapy **Fulvestrant Sequential ET**

Fulv

PROFILE B

Moderate response,

PROFILE A

Good response,

EVE (Palbo?)