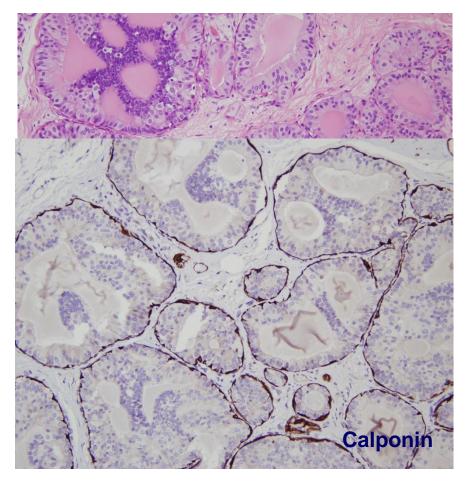
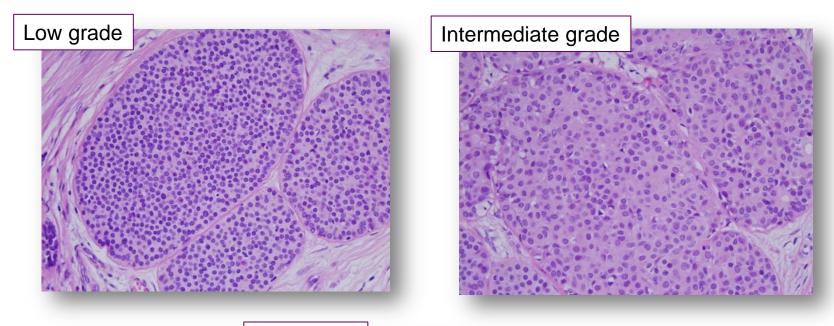
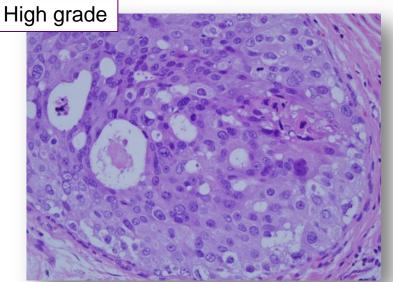

DCIS-What's New?

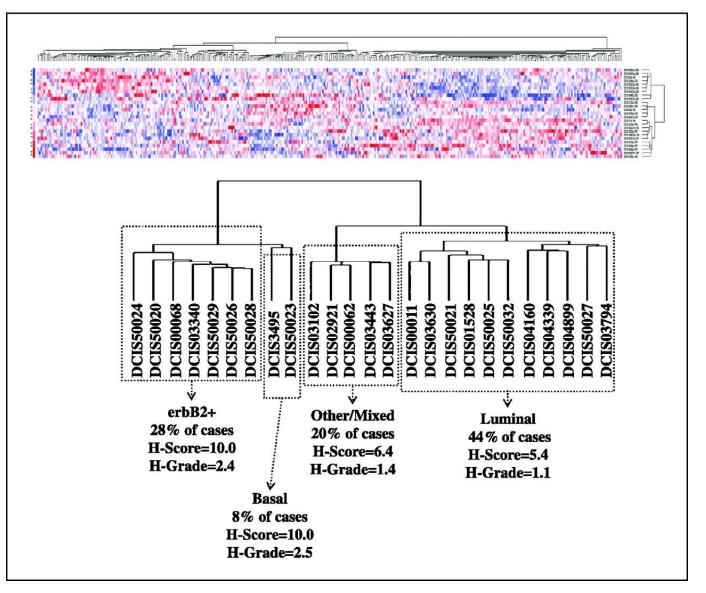
Molecular and Pathological Changes During Progression from in situ to Invasive Cancer



So Yeon Park, M.D., Ph.D. Department of Pathology Seoul National University College of Medicine Seoul National University Bundang Hospital

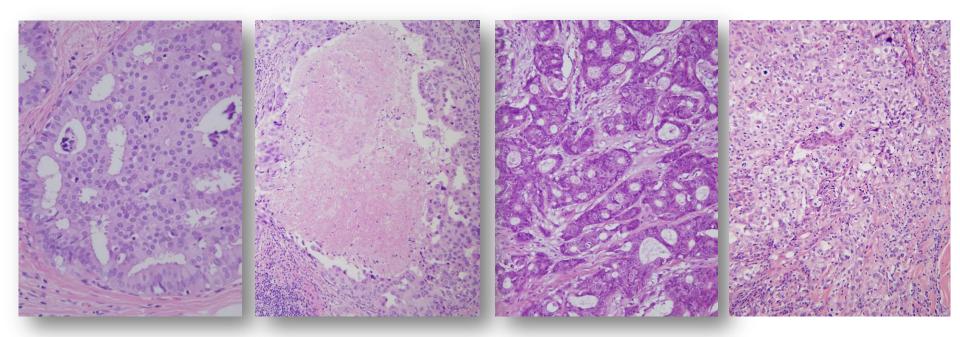

- Pathologic characteristics of ductal carcinoma in situ
- Intra-tumor diversity of ductal carcinoma in situ
- Proposed mechanisms of progression from in situ to invasive carcinoma
 - Aspect of tumor cells
 - Aspect of tumor microenvironment


Ductal carcinoma in situ

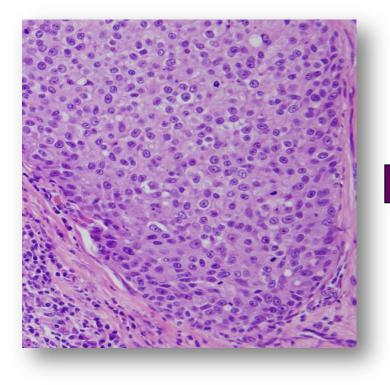

- DCIS is an early pathologic stage of breast cancer characterized by proliferation of tumor cells within the ductal-lobular system.
- It is surrounded by a continuous myoepithelial cell layer and a basement membrane, not extending through them.

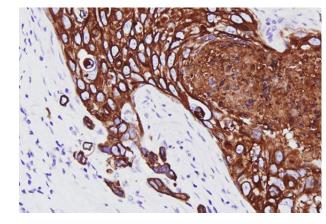
Histologic diversity of ductal carcinoma in situ

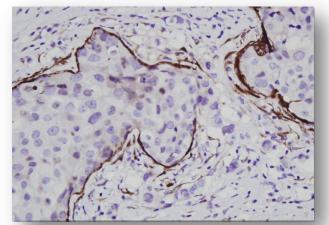
Intrinsic subtypes in ductal carcinoma in situ



Natural history of DCIS

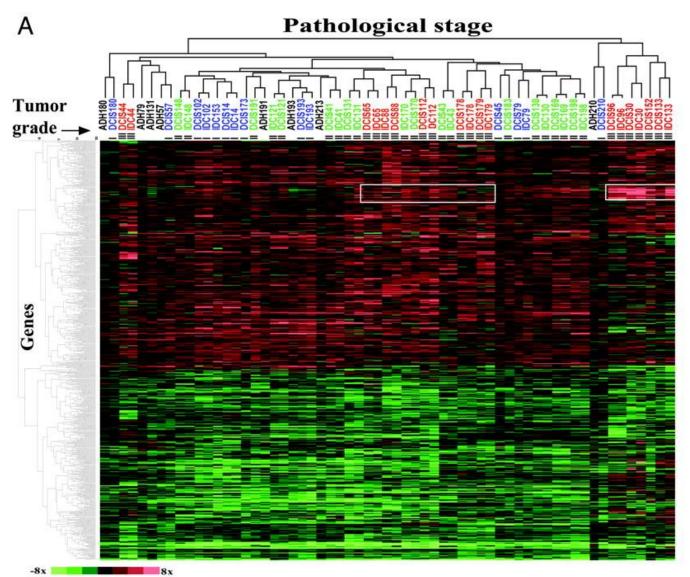

Type of evidence	Conclusions	Limitations			
Studies of DCIS initially misdiagnosed as benign lesions	Suggest 14~53% may progress to invasive cancer over 10-15 years	 Higher grade lesions less likely to have been misdiagnosed. Follow-up likely to be more complete for women subsequently diagnosed with cancer. 			
Recurrence of DCIS as invasive cancer	Overall recurrence rate between 1.5% and 22.5%	 May not reflect situation in absence of surgery. Recurrence strongly depends on excision margins. 			
Autopsy studies	Larger reservoir of undetected DCIS in the population, thus not all DCIS progress to invasive cancer.	 Modelling predicts such a reservoir would be expected due to differing growth rated of tumors. 			
Epidemiology	Risk factors similar between DCIS and invasive cancer	 Does not give estimate of progression rates, only that DCIS is likely to be a precursor for invasive cancer. 			


DCIS is a non-obligate precursor of invasive breast caner


Ductal carcinoma in situ vs. Invasive carcinoma

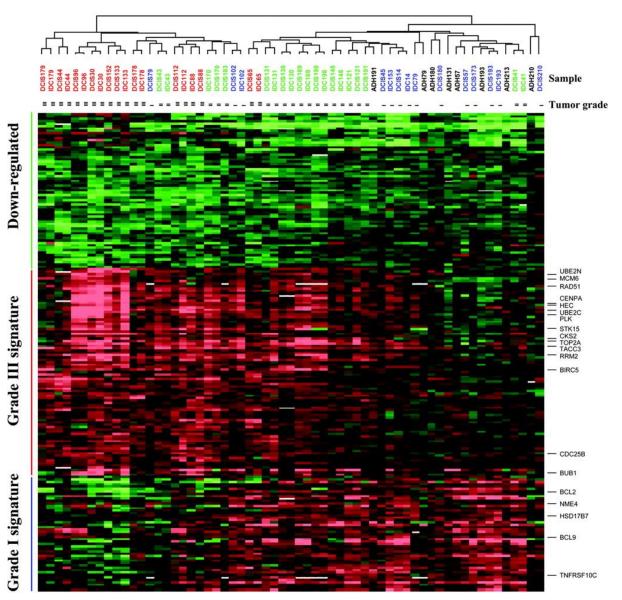
Ductal carcinoma in situ	Invasive carcinoma
Round configuration	Irregular and angulated configuration
Pushing border	Invasive growth
Presence of myoepithelial cells	Absence of myoepithelial cells
Rare reactive fibroblastic stroma (except for high grade DCIS)	Reactive fibroblastic stroma
Rare inflammatory cell infiltration (except for high grade DCIS)	Variable inflammatory cell infiltration

Invasive property of tumor cells

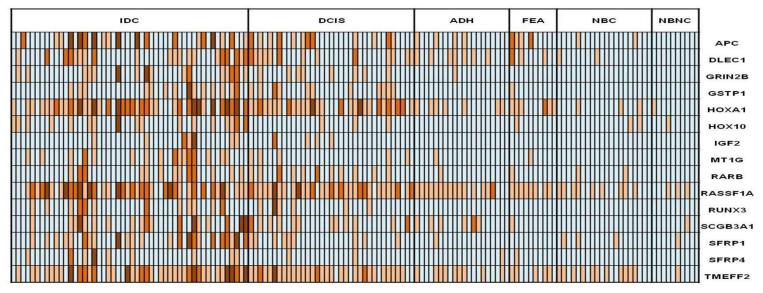

Loss of myoepithelial cells

Changes in stromal cells

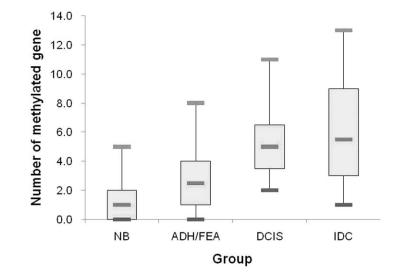
Mechanism of progression from in situ to invasive breast cancer


- Tumor progression by genetic aberrations or altered expression in critical genes for invasion in tumor cells
 - Gene amplification
 - Epithelial-mesenchymal transition
- Tumor progression driven by tumor microenvironment

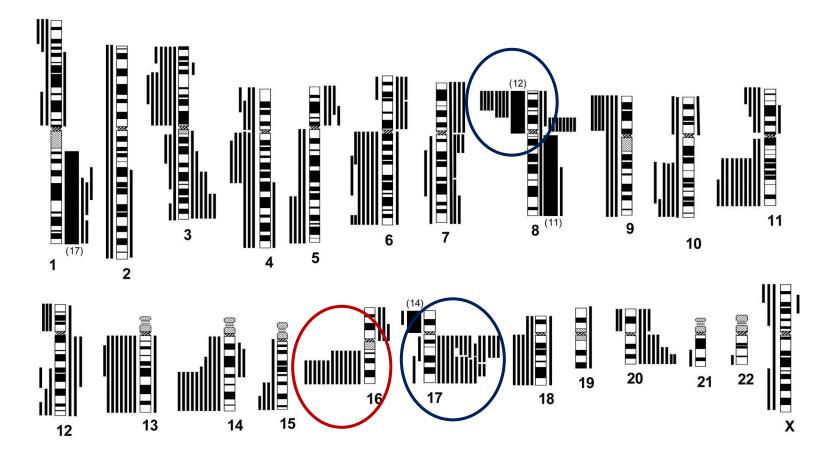
Gene Expression Profiles of Breast Cancer Progression Stages



Ma X et al., PNAS 2003;100:5974-5979

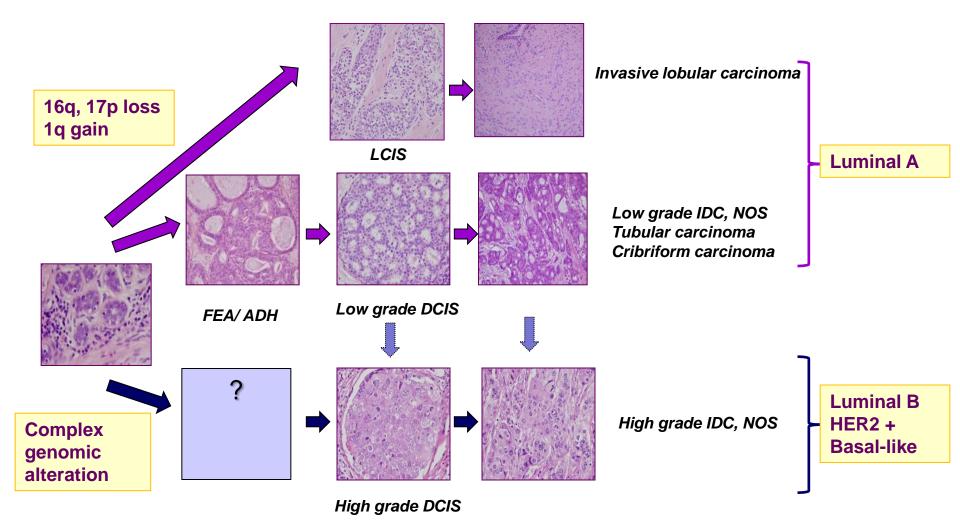

Gene Expression Profiles of Breast Tumor Grades

Promoter CpG island methylation during breast cancer progression



[0<PMR<4 (light blue), 4≤PMR<20 (light orange), 20≤PMR <50 (orange), PMR≥50 (brown)]

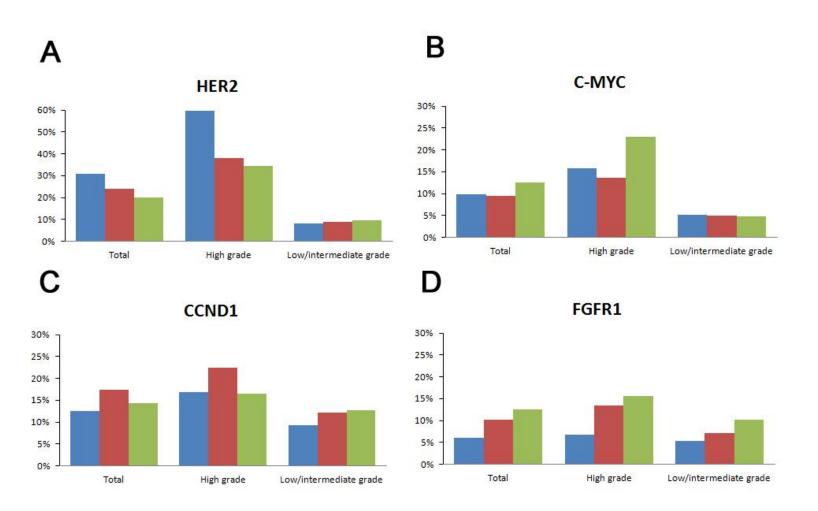
Park SY et al., Virchows Arch 2011;458:73-84


Patterns of chromosomal alterations in pure ductal carcinoma in situ

Comparison of chromosomal alterations in synchronous DCIS and invasive ductal carcinoma

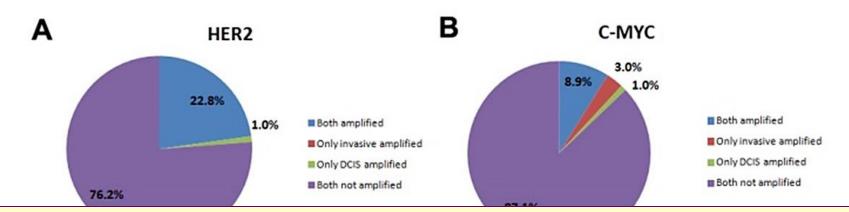
Case no.	Changes in common	Changes only in DCIS	Changes only in IDC	% concurrence	CGH changes in common	CGH changes only in DCIS	CGH changes only in IDC
17	14	0	0	100	3q24-qter+; 5p+; 5q31+; 5q32-qter-; 6q25-qter-; 7p+; 8p-; 8q+; 9q22- qter-; 16q23-qter+; 17q11-q21+; 20q13+; Xp-; Xq11-q26-	8p-; 8q+; 9q22- +; 17q11-q21+;	
30	2	0	0	100	1q+; 16q-	None	none
10	4	0	0	100	1p31-pter-; 1p12-p22+; 1q+; 2p23- p16-		
6	17	1	1	94	1q41-qtr+; 2q21-q24-; 2q32-q36+; 4p15-ptr-; 6q15-q22+; 7p+; 8p-; 11p11-p14+; 11q11-q12+; 12q21- qtr-; 13q12-q21-; 14q11-q23+; 14q24-qtr-; 15q25-qtr+; 16q-; 17q23-qtr+; 18q12-q21-	6q23-qter+	12p+
13	5	0	1	91	1q+; 7q11-q21+; 7q22-q32-; 8p-; 16q21-qtr-	None	Х-
31	9	2	0	90	6p+; 6q12-q16-; 6q21-q22+; 6q23-; 6q24+; 6q25-qtr-; 8p11-p12+; 8p21-ptr-; 8q+; 11q14-qtr-; 17p-; 19+	7+; 17q+	none
29	4	0	1	89	1q+; 4q33-qtr-; 6q22-q23-; 8q22-qtr-	None	14q22-qter-
7	11	1	5	79	8p21-ptr-; 8p11-p12+; 8q+; 11q13+; 11q14-qter-; 12q15+; 12q21-qtr-; 16q-; 17p11+; 17q11-q21+; 22q+	7+	6p+; 6q-; 13q-; 14q-; 17q22-qter+
8	6	2	2	75	1q+; 4p-; 5p+; 14q22-qtr-; 17p-; 17q11-q24+	8q21-qter+; 14q12- q21+	8p-; 11p-
16	2	3	0	57	17p-; 17q21-qtr+	6p21-ptr+; 6q16-q22+; 20q13+	none
12	2	4	5	31	3p11-p23-; 20q+	1	6p22+; 9q13-qtr-; 10q24- qtr-; 16q24-; 17p-
9	1	8	2	17	16q-	1p-; 1q+; 3-; 5-; 6+; 16p+; 20+; 22q-	8p-; 13q21-qter-

Progression of breast cancer: Low grade vs. high grade pathway

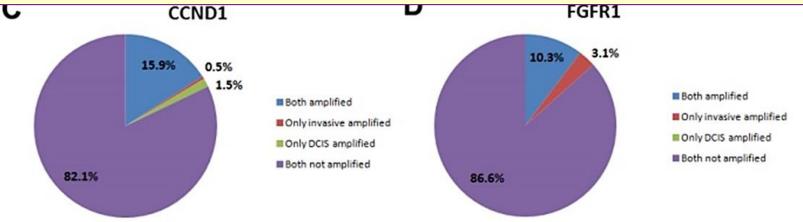


Gene amplification in the progression of in situ to invasive breast cancer

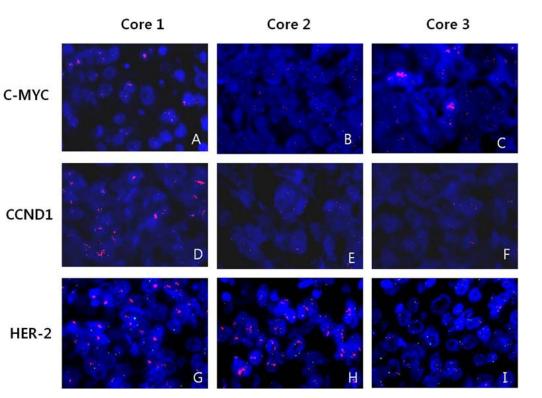
- The role of gene amplification in the progression of DCIS to invasive breast cancer is uncertain.
- Some workers found no difference in gene amplification frequencies between DCIS and invasive carcinomas.
- Others have suggested that C-MYC amplification plays an important role in the transition. However, this finding was not confirmed in other studies.
- We compared the gene amplification frequencies of HER2, C-MYC, CCND1 and FGFR1 in a relatively large series of pure DCIS, DCIS associated with invasive carcinoma, and invasive carcinomas, to investigate the role of gene amplification in the progression of DCIS to invasive carcinomas.


	Gene amplification	Molecular subtype					
Histologic stage		Luminal A	Luminal B	HER2 enriched	Basal-like	TN-NB	P value*
Invasive	C-MYC	13/208 (6.3)	15/103 (14.6)	7/42 (16.7)	14 /55 (25.5)	5/19 (26.3)	<0.001
carcinoma	CCND1	19/205 (9.3)	37/103 (35.9)	4/42 (9.5)	0/55 (0)	1/18 (5.3)	<0.001
(n=438)	FGFR1	21/202 (10.4)	21/100 (21.0)	3/42 (7.1)	7/55 (12.7)	0/18 (0)	0.025
DCIS associated	C-MYC	4/99 (4.0)	9/57 (15.8)	3/17 (17.6)	3/25 (12.0)	0/5 (0)	0.085
with invasive	CCND1	12/99 (12.1)	20/56 (35.7)	3/17 (17.6)	0/25 (0)	0/4 (0)	<0.001
carcinoma (n=216)	FGFR1	8/96 (8.3)	9/55 (16.4)	2/17 (11.8)	1/24 (4.2)	0/4 (0)	0.393
D D010	C-MYC	6/98 (6.1)	4/24 (16.7)	6/34 (17.6)	1/9 (11.1)	0/8 (0)	0.198
Pure DCIS (n=179)	CCND1	11/99 (11.1)	6/24 (25.0)	4/35 (11.4)	0/9 (0)	1/8 (12.5)	0.298
	FGFR1	5/95 (5.3)	4/23 (17.4)	1/33 (3.0)	0/9 (0)	0/8 (0)	0.134

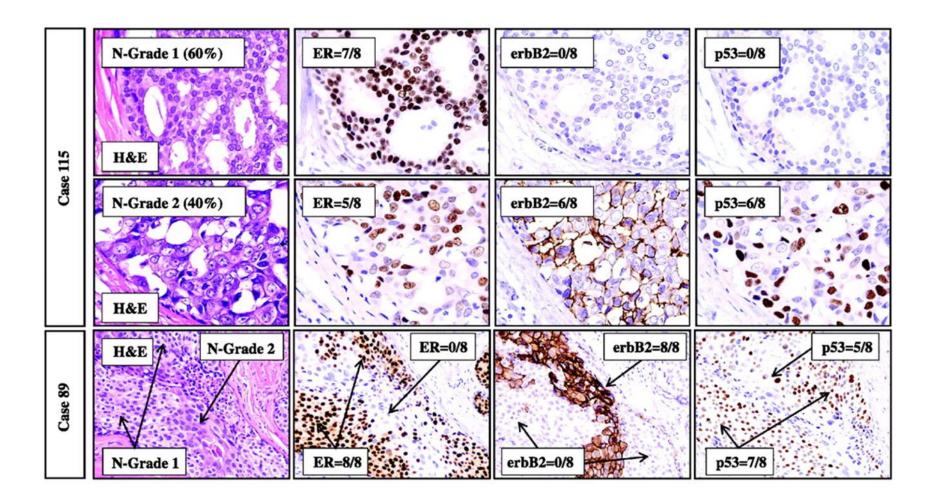
Frequencies of gene amplification in pure DCIS, DCIS associated with invasive carcinoma, and invasive carcinoma



Pure DCIS DCIS associated with invasive carcinoma Invasive carcinoma

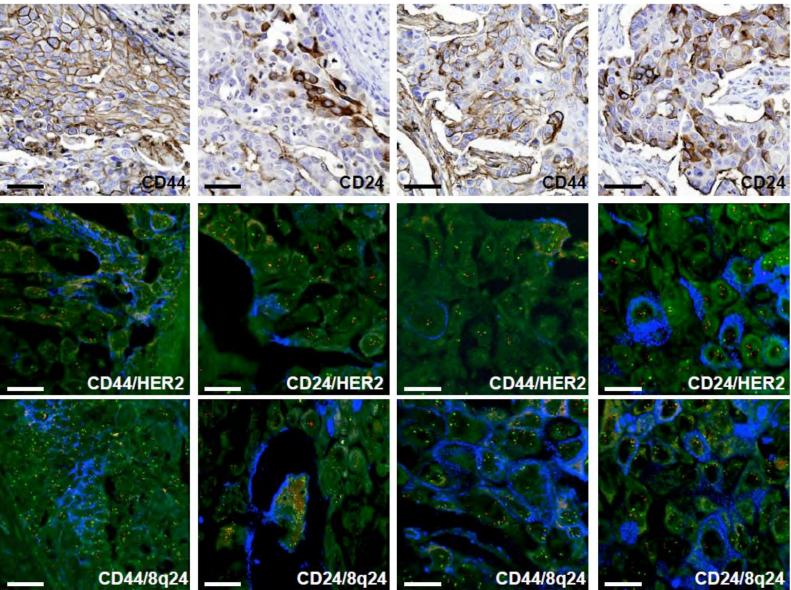

Comparison of gene amplification status in the invasive and DCIS components of the same tumors

The increased frequency of FGFR1 amplification in invasive carcinomas compared to pure DCIS and in the invasive components of individual tumors suggests a role for FGFR1 amplification in the progression from in situ to invasive carcinoma.

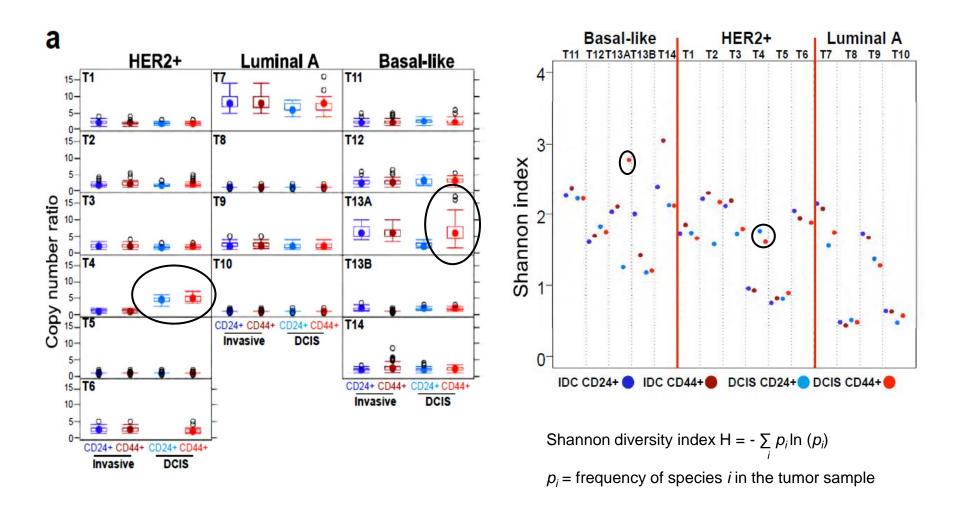


Heterogeneity of gene amplification in DICS

- In pure DCIS, heterogeneity of gene amplification was found in 3.7% (2/52) for HER2, 11.8 % (2/17) for C-MYC, 22.7% (5/22) for CCND1, and 10% (1/10) for FGFR1 amplified cases.
- These findings suggest that intratumoral genetic heterogeneity is already present in the DCIS and that progression of DCIS to invasive carcinomas may result from selection of subpopulations of tumor cells.

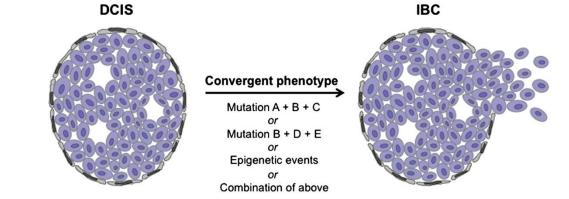

Ductal Carcinoma *In situ* and the Emergence of Diversity during Breast Cancer Evolution

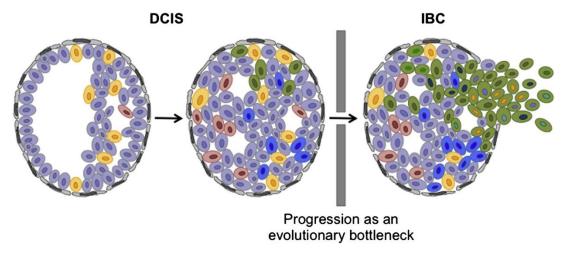
Allred DC et al. Clin Cancer Res 2008;14:370-378


DCIS

Invasive

Park SY et al., J Clin Invest 2010:120:636-44


Diversity for 8q24 copy number gain in breast cancers


Park SY et al., J Clin Invest 2010:120:636-44

Hypothetical models of progression from in situ to invasive breast cancer

Progression from in situ to invasive breast cancer as a convergent phenotype

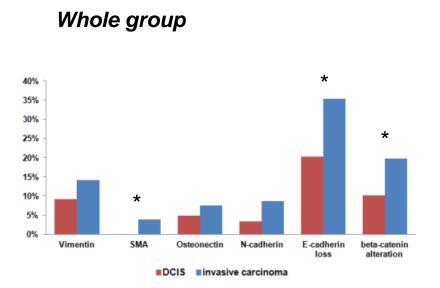
Progression from in situ to invasive breast cancer as an evolutionary bottleneck

Epithelial-mesenchymal transition (EMT) and epithelial plasticity

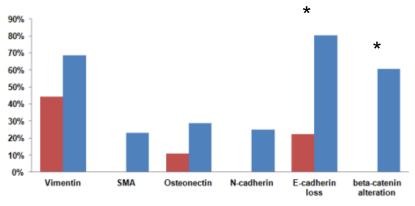
Loss

Tight junctions Gap junctions E-cahderin/β-catenin Epithelial integrins Cytokeratin

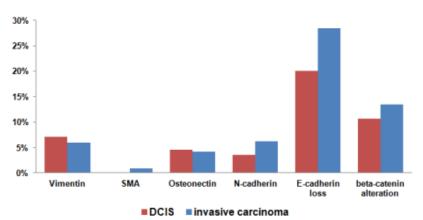
Gain


Mesenchymal integrins N-cadherin Vimentin Actin

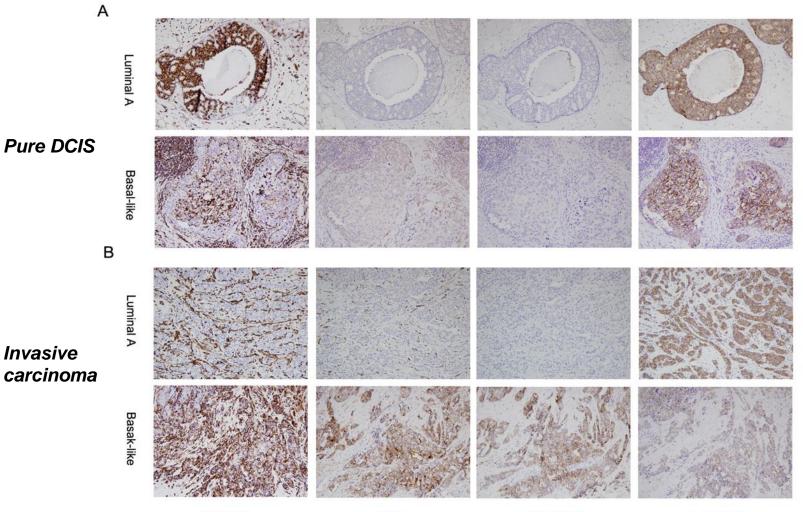
Relationships between the expression of EMT markers and molecular subtypes


Group	Marker	Luminal A	Luminal B	HER2 positive	Basal-like	TNNB	P value [*]
Invasive	Vimentin	7/179 (3.9)	4/100 (4.0)	5/40 (12.5)	35/51 (68.6)	4/18 (22.2)	<0.001
carcinoma	SMA	0/179 (0)	0/98 (0)	1/49 (2.5)	12/52 (23.1)	2/18 (11.1)	<0.001
(n=438)	Osteonectin	4/180 (2.2)	6/99 (6.1)	2/40 (5.0)	15/52 (28.8)	2/18 (11.1)	<0.001
	N-cadherin	3/181 (1.7)	13/98 (13.3)	2/40 (5.0)	13/52 (25.0)	3/18 (16.7)	<0.001
	E-cadherin loss	38/177 (21.5)	29/96 (30.2)	16/40 (40.0)	41/51 (80.4) ^a	11/18 (61.1)	<0.001
	β-catenin alteration	8/172 (4.7)	18/97 (18.6)	12/40 (30.0)	31/51 (60.8) ^b	6/18 (33.3)	<0.001
Pure DCIS	Vimentin	7/93 (7.5)	1/20 (5.0)	3/35 (8.6)	4/9 (44.4)	0/6 (0)	0.005
(n=179)	SMA	0/84 (0)	0/20 (0)	0/32 (0)	0/9 (0)	0/4 (0)	NA
	Osteonectin	0/93 (0)	4/21 (19.0)	3/35 (8.6)	1/9 (11.1)	0/6 (0)	0.003
	N-cadherin	3/86 (3.5)	1/20 (5.0)	1/32 (3.1)	0 /9 (0)	0/4 (0)	0.959
	E-cadherin loss	14/84 (16.7)	8/20 (40.0)	6/32 (18.8)	2/9 (22.2) ª	0/3 (0)	0.176
	β-catenin alteration	7/84 (8.3)	4/20 (20.0)	4/32 (12.5)	0/9 (0) ^b	0/4 (0)	0.390

 $^{a}P=0.001$ for E-cadherin, $^{b}P=0.001$ for β -catenin in basal-like invasive carcinomas vs. basal-like DCIS


Comparison of the expression of EMT markers in pure DCIS and invasive carcinoma

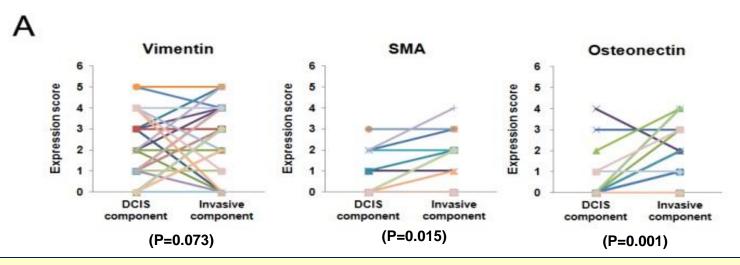
Basal-like subtype



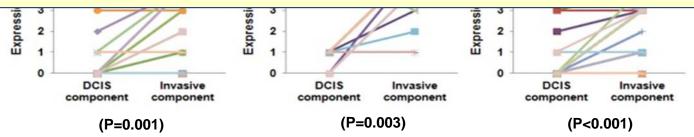
DCIS invasive carcinoma

Non-basal-like subtypes

Expression of EMT markers according to breast cancer subtype in pure DCIS and invasive carcinoma

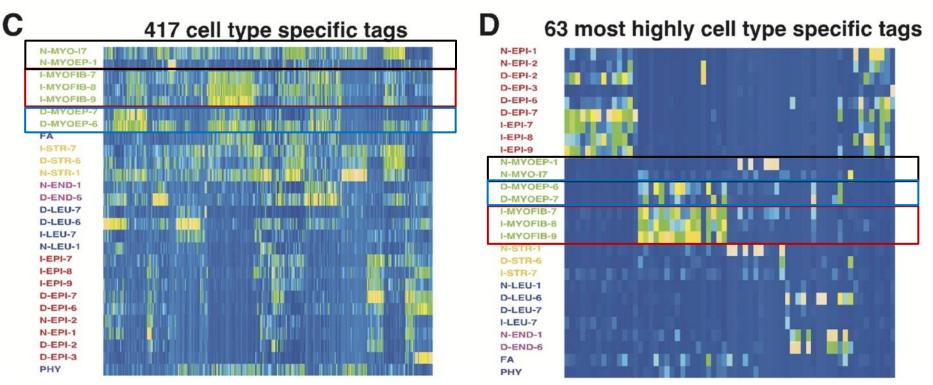

Vimentin

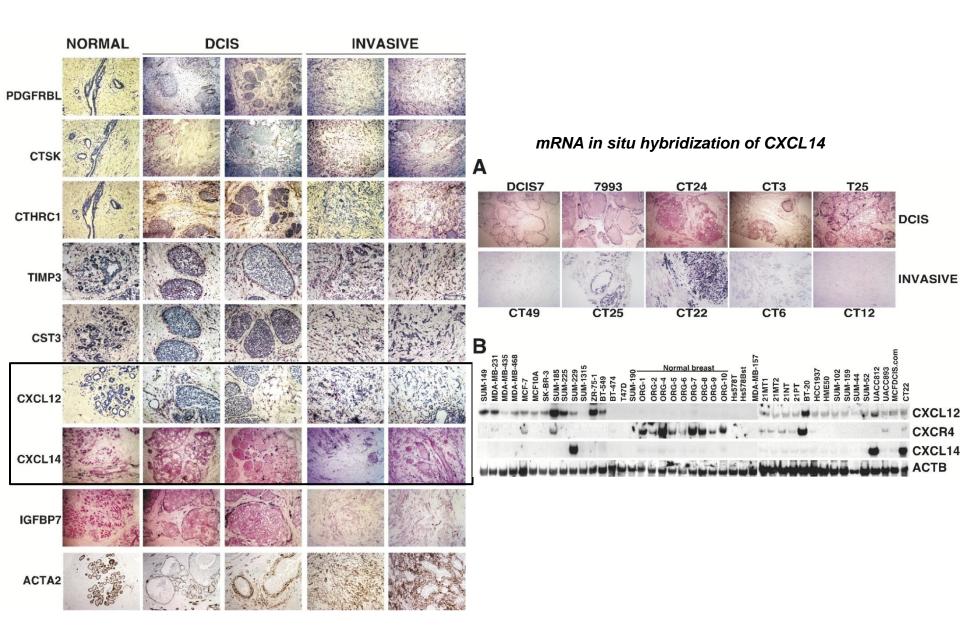
SMA

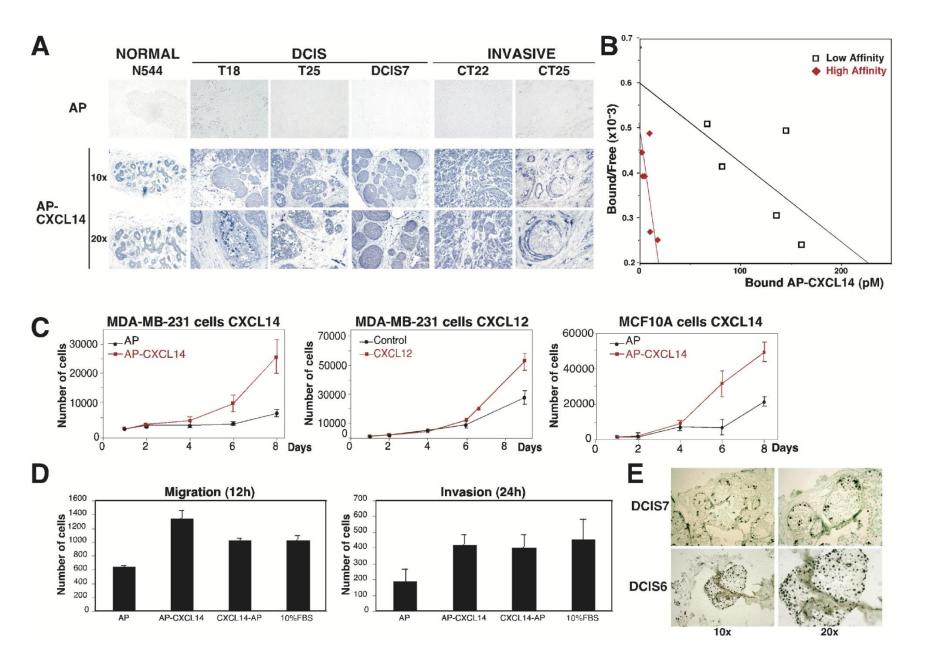

N-cadherin

E-cadherin

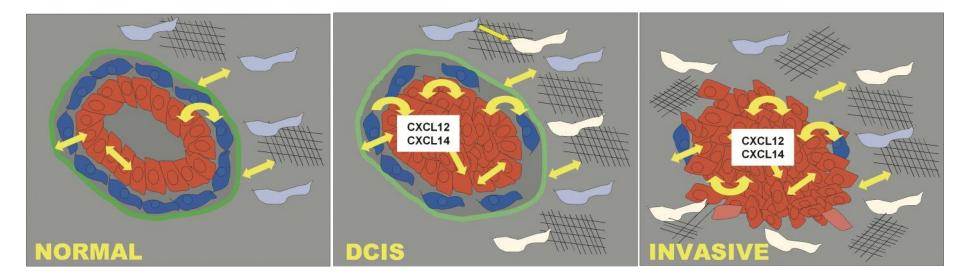
Comparison of the expression of EMT markers in the invasive and DCIS components of basal-like breast cancer


Higher expression of EMT markers in invasive carcinomas than in pure DCIS, especially in basal-like subtype, and in the invasive component of basal-like breast cancers suggests that EMT may be involved in the progression from in situ- to invasive basal-like breast cancers.

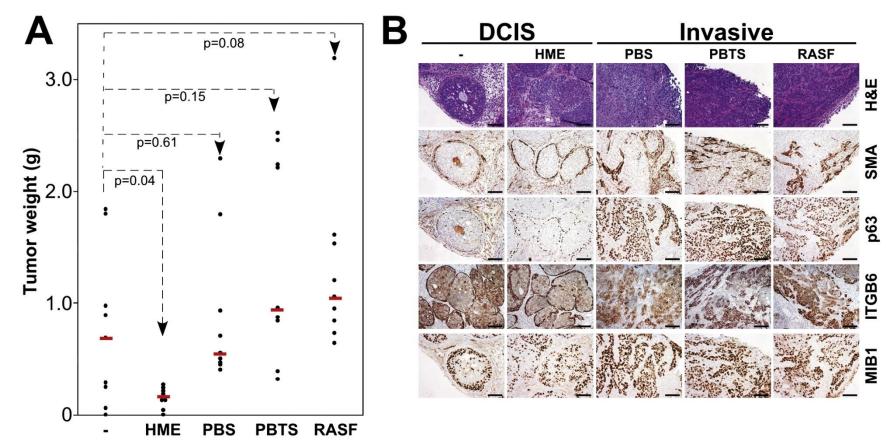

Mechanism of progression from in situ to invasive breast cancer


- Tumor progression by genetic aberrations or altered expression in critical genes for invasion
- Tumor progression driven by tumor microenvironment
 - Myoepithelial cells
 - Stroma

Molecular characterization of the tumor microenvironment in breast cancer


Color scheme: blue, downregulated (low tag counts); green, mean tag counts; yellow, upregulated (high tag counts).

Allinen M et al., Cancer Cell 2004;6:17-32


In situ to invasive breast carcinoma transition driven by chemokines released from myoepithelial cells and myofibroblasts

The CXCL14 and CXCL12 chemokines overexpressed in tumor myoepithelial cells and myofibroblasts, respectively, bind to receptors on epithelial cells and enhance their proliferation, migration, and invasion. Thus, chemokines may play a role in breast tumorigenesis by acting as paracrine factors.

Allinen M et al., Cancer Cell 2004;6:17-32 Rizki A & Bissell MJ, Cancer Cell 2004;6:1-2

Regulation of in situ to invasive breast carcinoma transition by myoepithelial cells

HME, Normal myoepithelial cells; PBS, fibroblast from normal breast; PBTS, fibroblast from breast tumor; RASF, fibroblasts form rheumatoid arthritis synovium

Hu M et al., Cancer cell 2008;13:394-406

Phenotypic alterations in ductal carcinoma in situ-associated myoepithelial cells: biologic and diagnostic implications

	Staining Inte	nsity of DCIS	-associated My		
Antibody (No. Evaluable)	3	2	1	0	No. (%) Cases With Decreased or no Expression in DCIS-associated Myoepithelial Cells (%)
SMA (100)	99	1	0	0	1/100 (1.0)
Calponin (98)	81	15	2	0	17/98 (17.4)
CD10 (88)	58	19	10	1	30/66 (34.0)
CK5/6 (96)	67	20	7	2	29/96 (30.2)
p63 (95)	83	8	3	1	12/95 (12.6)
SMMHC (98)	23	34	29	12	75/98 (76.5)
p75 (96)	92	4	0	0	4/96 (4.2)

TABLE 3. Staining Intensity for 7 Myoepithelial Markers in DCIS-associated Myoepithelial Cells Compared With Staining Intensity of Myoepithelial Cells in Adjacent Normal Ducts and Lobules

 A key event in the progression of in situ to invasive breast caner is the disappearance of the myoepithelial cell layer due to defective myoepithelial cell differentiation regulated by intrinsic and microenvironmental signals.

 Thus, myoepithelial cells can be considered gatekeepers of the in situ to invasive carcinoma transition

SMMH

Summary

- Like invasive breast cancer, DCIS comprises a highly heterogeneous group of diseases with diverse histologic features, molecular alterations and risks of progression to invasive cancer.
- DCIS exhibit intra-tumoral phenotypic and genetic heterogeneity.
- DCIS are non-obligate precursors of invasive cancers of similar grade.
- Currently, it is not possible to stratify the aggressive forms of DCIS which will progress to invasive breast cancer from the indolent forms.
- Although the mechanisms by which DCIS progress to invasive carcinomas are not well understood, the progression from in situ to invasive carcinoma is thought to be a complex process, depending on changes in tumor cell properties and tumor microenvironment.

Acknowledgement

Collaborators

Seoul National University College of Medicine & Bundang Hospital Gyeong Hoon Kang Woo Kyung Moon Yu Jung Kim Jee Hyun Kim Eunyoung Kang Sung-Won Kim Sun Mi Kim

> Dana-Farber Cancer Institute Kornelia Polyak

Lab members

Yoomi Choi Min Hye Jang Jae Moon Gwak Yul Ri Chung Mimi Kim Eun Joo Kim Hyun Jeong Kim

Asan Medical Center Hee Jin Lee Gyeongyub Gong

암병원·뇌신경병원