

Pathological Issues in Preoperative Therapy

Young Kyung Bae, M.D.

Department of Pathology Yeungnam University Medical Center Daegu, Korea

Content

- Pre-treatment diagnosis and assessment of predictive markers
- Factors associated with pathological complete response (pCR)
- Post-treatment histological assessment and grading of the therapy response
- Evaluation of lymph nodes

Preoperative (neoadjuvant) therapy

- Increases breast conservation rates by surgical downstaging
- Pathologic response correlates with patients survival

	Neoadjuvnat therapy (preoperative)	Adjuvant therapy (postoperative)
Purpose	Tumor burden	Disseminated tumor cells Stem cells
Endpoint	Pathological complete response (pCR)	Increase survival

Pathologic complete response (pCR)

- The criteria for pCR are still controversial!
 No residual invasive cancer within both the breast and lymph nodes
- About 60% of patients with no grossly detectable residual tumor after preoperative chemotherapy have persistent carcinoma histologically

- A core needle biopsy (CNB) of the primary tumor is preferred to fine needle aspiration
 - Type, histological grade, presence of lymphovascular invasion, ER, PR, HER2...
- Fine needle aspiration can be used to confirm ALN metastasis

Neur

Biomarker research

HER

ER, PR and HER2 on CNB

Concordance rate between CNB and excision						
	Ν	ER	PR	HER2		
Park et al. (2009)	104	99%	97.1%	86.5%		
Wood et al. (2007)	100	95.8%	90.3%	86.6%		
Mann et al. (2005)	100	86%	83%	80%		
Jacobs et al. (1998)	56	100%	NA	100%		

ER, PR and HER2 on CNB

Pre-treatment CNB

- ✓ Test for ER, PR
- ✓ Test for HER2 (retest by ISH if any membranous staining is seen on immunohistochemistry)

Pathologic features and response to neoadjuvant chemotherapy

Response	Features
Good	Ductal High grade ER- HER2+ High proliferation
Poor	Multicentric Low grade ER+ Low proliferation

Molecular subtypes and pCR

Molecular classification	No	pCR (%)	
Luminal A/B subtype	30	7	
Normal breast like	10	0	
HER2+	20	45	
Basal subtype	22	45	<i>p</i> <0.001

Clin Cancer Res 2005;11:5678-85

	pCR(%)			
Regimens	No	TNBC	Non-TNBC	р
FAC/FEC/AC	308	20	5	0.001
TFAC/TFEC	588	28	17	0.072
Single agent taxane	58	12	2	0.82
Other	164	14	7	0.33
Total	1118	22	11	0.034

J Clin Oncol 2008;26:1275-81

Recurrence score and pCR

Gianni et al. JCO 2005;23:7265-77

Breast cancer molecular profiles and tumor response to neoadjuvant doxorubicin and paclitaxel: The I-SPY TRIAL (CALGB 150007/150012, ACRIN 6657)

IHC	Distribution (n=190)	pCR (n=190)	p
HR+HER2–	48%	10%	
HR+HER2+	12%	32%	
HR–HER2+	12%	50%	
HR-HER2-	28%	33%	
Gene profile Intrinsic subtypes	Distribution (n=149)	pCR (n=144)	p
Luminal A	29%	2%	
Luminal B	19%	15%	
HER2-enriched	15%	52%	
Basal	32%	34%	
Normal-like	5%	43%	< 0.0001

Esserman et al. 2009 ASCO abstract #LBA515

eunganm University Medical Center

The I-SPY TRIAL, continued

Gene profile	Distribution (n=149)	pCR (n=144)	p		
ROR-S					
Low	26%	5%			
Moderate	38%	22%			
High	37%	40%	8.8 x 10 ⁻⁴		
NKI 70					
Good signature	9%	0%			
Poor signature	91%	27%	0.038		
Wound Healing					
Quiescent	23%	6%			
Activated	77%	30%	0.0049		
p53 Mutation Gene Signature					
Wild type	50%	11%			
Mutation	50%	38%	3.7 x 10⁻⁴		

Esserman et al. 2009 ASCO abstract #LBA515

Proliferation-related genes are important in prognosis of breast cancer

Pathobiology 2008;75:104-111

Yeunganm University Medical Center

Histological assessment of therapy response

- Correlate with clinical and radiologic findings
- Sample widely to confirm pCR

Yeunganm University Medical Center

Tumor size

Stromal fibrosis

Tumor necrosis

Chronic inflammatory cells infiltration

Therapy effects on immunohistochemical markers

- No significant differences in ER, PR, and HER2 expression before and after neoadjuvant treatment
- Hormone receptor status changed in 5% of neoadjuvant chemotherapy groups due to tissue sampling
- Proliferation rates (Ki67 index and mitotic count) may be increased, decreased or remain unchanged
- A tendency to have increased immunoreactivity for p53

Virchows Arch 2005;446:489-96 Am J Surg 2003;186:348-50 Anticancer Res 1996;16:3105-10

Grading of histological response

Residual cancer burden (RCB)

RCB = 1.4 $(f_{inv}d_{prim})^{0.17} + [4(1-0.75^{LN})d_{met}]^{0.17}$

Primary tumor burden (size and cellularity)= f_{inv} x d_{prim}

 $d_{prim} = \sqrt{d_1 d_2}$

 $f_{inv} = (1 - (\% CIS/100)) \times (\% CA/100)$

Axillary nodal burden (number and size)= $4(1-0.75^{LN}) d_{met}$

Yeunganm University Medical Center

J Clin Oncol 2007;254414-22

Residual cancer burden (RCB)

عربي | English | Español | Türkçe

About Us Locations Events Careers Publications How You Can Help Contact Us Go to myMDAnderson >

Making Cancer History*

Patient and Cancer Information	on 📃	Education and Research			Q Keyword			Search
Departments, Programs & Labs	Research	Education and Training	Res	ources	for Professional	ls	Events	
Home » Education and Research » Resou	irces for Professionals »	Clinical Tools and Resources			E-ma	ail 🖂	Print 🖽	Text Size \ominus \oplus
Clinical Tools and Resources Clinical Calculators	Medical Cal	culator						
Scientific Resources	*Values mus (1) Primary 1	t be entered into all fields for the ca F umor Bed	lculation re	sults to I	pe accurate.			
	Primary	Tumor Bed Area:	1	0	(mm) X 8	(mm)		
	Overall	Cancer Cellularity (as percentage	of area): 5	50	(%)			
	Percent	age of Cancer That Is <i>in situ</i> Disea	ise: 1	0	(%)			
	(2) Lymph No	odes						
	Numbe	r of Positive Lymph Nodes:	0)				
	Diamet	er of Largest Metastasis:	0)	(mm)			
		R	eset 🛛	Calculate	9			
	Residu	al Cancer Burden:	1	.774				
	Residu	al Cancer Burden Class:	F	RCB-II				

Miller-Payne cellularity assessment

Ogston et al. Breast 2003;12:320-7

Miller-Payne cellularity assessment

Breast Cancer (2008) 15:5-7 DOI 10.1007/s12282-007-0016-x

SPECIAL ARTICLE

Histopathological criteria for assessment of therapeutic response in breast cancer (2007 version)

Masafumi Kurosumi · Sadako Akashi-Tanaka · Futoshi Akiyama · Yoshifumi Komoike · Hirofumi Mukai · Seigo Nakamura · Hitoshi Tsuda · (Committee for Production of Histopathological Criteria for Assessment of Therapeutic Response of the Japanese Breast Cancer Society)

- Grade 0 No response
- Grade 1 Slight response
 - (1a) Mild response: marked changes in <1/3 of cancer cells
 - (1b) Moderate response: marked changes in 1/3~2/3
- Grade 2 Marked response
 - (2a) marked changes in >2/3
 - (2b) only a few remaining cancer cells
- Grade 3 Complete response disappearance of all tumor cells

Yeunganm University Medical Center

Importance of histological grading of therapy response

The amount of residual invasive cancer after preoperative therapy is an important prognostic predictor!!!

Evaluation of sentinel lymph node

• Timing : before or after preoperative therapy

Pre-treatment SLN biopsy:

Accurate assessment of initial nodal stage

Post-treatment SLN biopsy: Assessment of therapy response (pCR, RCB) No need for two-step operation

Lymph node handling

Sentinel LNs

Cytokeratin immunostaining if the LN has minimal residual carcinoma

Non-sentinel LNs

A single representative H&E section without cytokeratin immunostaining

Yeunganm University Medical Center

Nodal status and clinical outcome

 Conversion to node-negative status after treatment

ER-negative tumor pCR in the primary tumor

 The number of or the extent of involved lymph nodes is related to survival regardless of pCR or RD in the breast

Summary

- Pre-treatment core needle biopsy provides full range of prognostic and predictive information
- Pathologic response in the breast and lymph nodes after preoperative therapy is an important prognostic factor
- A comprehensive and validated grading system of pathologic response is necessary to predict disease recurrence after preoperative therapy
- Pathologists take a role in the multidisciplinary approach to develop a new marker predicting response and resistance to therapy

