Progress since 2007 Pre-clinical science

Soonmyung Paik, MD Samsung Cancer Research Institute & Division of Pathology, NSABP

Breast cancer therapeutic targets

Evolution of breast cancer therapeutic targets

- Subtype specific therapy
- Targeting through synthetic lethality (PARPi for HR defects)

How can you target loss of function? (BRCA1 mutation, p53, etc)

Synthetic lethality

Science 1997

Integrating Genetic Approaches into the Discovery of Anticancer Drugs

Leland H. Hartwell, Philippe Szankasi, Christopher J. Roberts, Andrew W. Murray, Stephen H. Friend*

The discovery of anticancer drugs is now driven by the numerous molecular alterations identified in tumor cells over the past decade. To exploit these alterations, it is necessary to understand how they define a molecular context that allows increased sensitivity to particular compounds. Traditional genetic approaches together with the new wealth of genomic information for both human and model organisms open up strategies by which drugs can be profiled for their ability to selectively kill cells in a molecular context that matches those found in tumors. Similarly, it may be possible to identify and validate new targets for drugs that would selectively kill tumor cells with a particular molecular context. This article outlines some of the ways that yeast genetics can be used to streamline anticancer drug discovery.

Fig 3. The concept of synthetic lethality. Synthetic lethality occurs when mutation in either of two genes individually has no effect but combining the mutations leads to death.²⁷ In cancer therapy, this effect implies that inhibiting one of these genes in a context where the other is defective should be selectively lethal to the tumor cells but not toxic to the normal cells, potentially leading to a large therapeutic window.²⁸

Table 1. Human genes altered in tumors and their relatives in model genetic systems. Genes that are not structural homologs but act in analogcus pathways (such as human *p53* and *S. cerevisiae RAD9*) are shown in brackets. *Saccharomyces cerevisiae* genes are designated with superscript Sc, *S. pombe* with Sp, *C. elegans* with Ce, and *D. melanogaster* with Dm. Because of space limitations, this is only a representative list of genes mutated in tumors that have genetic analogs in model systems. Comprehensive lists of model system genes analogous to human genes mutated in tumors can be found in the references listed herein and in (34).

Function	Human genes	Model system analogs: Structural homologs or related biological roles
DNA damage	p53	[RAD9 ^{Sc} , rad1 ^{+Sp}]
checkpoint	ATM	MEC1 ^{Sc} , TEL1 ^{Sc} , rad2+ ^{SP} , moi-410m
DNA mismatch	MSH2, MLH1	MSH2 ^{Sc} , MLH1 ^{Sc}
Nucleotide excision renair	XP-A, XP-B	RAD14 ^{Sc} , PAD25 ^{Sc}
O ⁶ -methylguanine	MGMT	MGT1 ^{sc}
Double-strand break repair	BRCA2, BRCA1	[RAD51 ^{sc} , RAD54 ^{sc}]
DNA helicase	BLM	SGS1 ^{.sc} , rah1+ ^{Sp}
Growth factor signaling	PAS	RAS1 ^{3c} , RAS2 ^{sc} , let-60 ^{Ce}
	NF1	IRA1 ^{sc} , IRA2 ^{sc}
	MYC	dMyc ^{Dm}
	PTH	patched ^{Dm}
Cell cycle control	Cyclin D, Cyclin E	CLN1 ^{sc} , CLN2 ^{sc} , Cyclin D ^{Dm} , Cyclin E ^{Dm}
	p27 ^{kip1}	[SIC1 ^{SC}]
	Pb	Rbt
Apoptosis	BCL-2	ced-9 ^{ce}

Synthetic lethality screening to identify chemotherapeutic targets

(Seattle Project - Hartwell and Friend) Simon et al, Cancer Research, 60:328, 2000

 Screening of sensitivity of panel of isogenic yeast strains with selective mutations in DNA repair or cell cycle checkpoint function to 23 chemotherapeutic agents approved by FDA Synthetic lethality screening to identify chemotherapy targets

Synthetic lethality screening

- 3 types of agents identified
 - Selective agents
 - cisplatin, cytarabine phosphate, camptothecin sodium, mitoxantrone, and idarubicin
 - Broadly selective agents
 - mitomycin C, thiotepa, lomustine, carmustine, streptozotocin, mechlorethamine, bleomycin, hydroxyurea, and X-rays
 - Non-selective agents
 - methotrexate, trimetrexate, fluorouracil, fluorodeoxyuridine, pentostatin, dacarbazine, actinomycin D, daunorubicin, and doxorubicin
 - Daunorubicin, doxorubicin, and actinomycin D, for example, are capable of generating free radicals, which target membranes in addition to DNA

Many chemotherapeutic agents are non-selective

Simon et al, Cancer Research, 60:328, 2000

A Synthetic Lethal Therapeutic Approach: Poly(ADP) Ribose Polymerase Inhibitors for the Treatment of Cancers Deficient in DNA Double-Strand Break Repair

Alan Ashworth

Fig 1. Loss of functional BRCA1 or BRCA2 affects the choice of DNA dcuble-strand break (DSB) repair pathway. DNA DSBs are repaired in normal cells, in part, by homologous recombination (HR) -based mechanisms. Functional BRCA1 and BRCA2 proteins are required for efficient repair by HR and genomic stability. In the absence of BRCA1 or BRCA2, alternative repair pathways, such as nonhomologous end-joining (NHEJ) and single-strand annealing (SSA), are used, leading to cell death or survival with genomic damage.

Inhibition of PARP1 selectively kills BRCA deficient cells

Fig 4. BRCA2 mutant cells are excuisitely sensitive to a potent PARP inhibitor.³⁶ Clonogenic survival curves of BRCA2 wild-type, heterozygous, and deficient cells after treatment with the poly(ADP) ribose polymerase inhibitor KU0058948.³⁷ BRCA2-deficient cells are more than 1,000-fold more sensitive than wild-type or heterozygous cells to KU0058948.

BRCAness = defects in DNA double strand break (DSB) repair pathway

Progression-Free Survival

PFS Months

Now this can be achieved in cancer cell lines with RNA interference

Anticancer drugs based on tumor context

а

d

MOLECULAR AND CELLULAR BIOLOGY, Dec. 2006, p. 9377–9386 0270-7306/06/\$08.00+0 doi:10.1128/MCB.01229-06 Copyright © 2006, American Society for Microbiology. All Rights Reserved.

Small Interfering RNA Screens Reveal Enhanced Cisplatin Cytotoxicity in Tumor Cells Having both BRCA Network and TP53 Disruptions⁷[‡]

Steven R. Bartz,¹⁺* Zhan Zhang,¹⁺ Julja Burchard,¹ Maki Imakura,¹ Melissa Martin,¹ Anthony Palmieri,¹ Rachel Needham,¹ Jie Guo,¹ Marcia Gordon,¹ Namjin Chung,² Paul Warrener,¹ Aimee L. Jackson,¹ Michael Carleton,¹ Melissa Oatley,² Louis Locco,² Francesca Santini,² Todd Smith,² Priya Kunapuli,² Marc Ferrer,² Berta Strulovici,² Stephen H. Friend,^{3,4} and Peter S. Linsley¹

Rosetta Inpharmatics, LLC, 401 Terry Ave N., Seattle, Washington 98109¹; Department of Automated Biotechnology, Merck Research Laboratories, Merck & Co., Inc., 502 Louise Lane, North Wales, Pennsylvania 19454²; and Departments of Advanced Technology³ and Oncology,⁴ Merck Research Labs, Merck & Co., Inc., P.O. Box 4, Sumneytown Pike, West Point, Pennsylvania 19486

RNA interference strategy to identify key determinant of treatment response

Cancer Cell Report

A Functional Genetic Approach Identifies the PI3K Pathway as a Major Determinant of Trastuzumab Resistance in Breast Cancer

Katrien Berns,^{1,6} Hugo M. Horlings,^{2,6} Bryan T. Hennessy,⁵ Mandy Madiredjo,¹ E. Marielle Hijmans,¹ Karin Beelen,³ Sabine C. Linn,³ Ana Maria Gonzalez-Angulo,⁵ Katherine Stemke-Hale,⁵ Michael Hauptmann,⁴ Roderick L. Beijersbergen,¹ Gordon B. Mills,⁵ Marc J. van de Vijver,² and René Bernards^{1,*} ¹Division of Molecular Carcinogenesis and Center for Biomedical Genetics ²Division of Experimental Therapy ³Division of Medical Oncology ⁴Division of Molecular Biology The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands ⁵Department of Systems Biology, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA ⁶These authors contributed equally to this work. ^{*}Correspondence: r.bernards@nki.nl DOI 10.1016/j.ccr.2007.08.030

PTEN loss or PIK3CA activation confers resistance to trastuzumab

Cancer Cell Article

Identification of CDK10 as an Important Determinant of Resistance to Endocrine Therapy for Breast Cancer

Elizabeth Iorns,¹ Nicholas C. Turner,¹ Richard Elliott,¹ Nelofer Syed,¹ Ornella Garrone,² Milena Gasco,² Andrew N.J. Tutt,^{1,3} Tim Crook,¹ Christopher J. Lord,^{1,*} and Alan Ashworth^{1,*} ¹The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, Fulham Road, Lordon SW3 6JB, UK ²Department of Medical Oncology, Ospedale Santa Croce e Carle, 12100 Cuneo, Italy ³Breakthrough Breast Cancer Research Unit, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, UK ³Correspondence: chris.lord@icr.ac.uk (C.J.L.), alan.ashworth@icr.ac.uk (A.A.) DOI 10.1016/j.ccr.2008.01.001

Cancer Cell Previews

Unraveling the Complexity of Endocrine Resistance in Breast Cancer by Functional Genomics

Association of Quantitative ER Expression by QRT-PCR and Tamoxifen Benefit

Role of DTC in adjuvant setting

Impact of adjuvant trastuzumab on Disease-Free Survival

NSABPB-31

B-31, distribution of cases according to central HER2 assay

	IHC=0	IHC=1	IHC=2	IHC=3	unk
FISH-	25 "Centr	87 al assay ne	62 gative"	31	2
FISH+	9	32	84	1457	6

Schardt JA, Meyer M, Hartmann CH et al, Cancer Cell, 8:227-239 (2005)

	Primary tumor IHC 3+	Primary tumor IHC<3+
DTC HER2 amplified	1	5
DTC HER2 not-amplifed	10	11

Klein CA, Cell Cycle 3:29-31, 2004

HER2, Notch, and Breast Cancer Stem Cells – Targeting the Axis of Evil

Korkaya and Wicha, CCR 2009

Potential problems of marker development in neoadjuvant setting

Metastatic & Neoadjuvant setting	Adjuvant setting
Direct effect on tumor burden	Many confounding variables
	 Bulk disease removed Stem cells? Base-line risk Legacy treatment (tamoxifen, chemotherapy) DTC

Organ specific metastases

(Joan Massagué lab at MSKCC)

Zhang XH et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 2009;16:67-78. Padua D et al. TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008;133:66-77 Bos PD et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009;459:1005-9. Korpal M, et al. Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med 2009;15:960-6. Vol 459|18 June 2009| doi:10.1038/nature08021

nature

Genes that mediate breast cancer metastasis to the brain

Paula D. Bos¹, Xiang H.-F. Zhang¹, Cristina Nadal¹[†], Weiping Shu¹, Roger R. Gomis¹[†], Don X. Nguyen¹, Andy J. Minn², Marc J. van de Vijver³, William L. Gerald⁴, John A. Foekens⁵ & Joan Massagué^{1,6}

TGFβ Primes Breast Tumors for Lung Metastasis Seeding through Angiopoietin-like 4

David Padua,¹ Xiang H.-F. Zhang,¹ Qiongqing Wang,¹ Cristina Nadal,⁵ William L. Gerald,² Roger R. Gomis,⁴ and Joan Massagué^{1,3,*} ¹Cancer Biology and Genetics Program ²Department of Pathology ³Howard Hughes Medical Institute Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA ⁴Oncology Programme, Institute for Research in Biomedicine, 08028 Barcelona, Spain ⁵Institut de Malalties Hemato-Oncològiques, Hospital Clínic-IDIBAPS, 08036 Barcelona, Spain

*Correspondence: j-massague@mskcc.org

DOI 10.1016/j.cell.2008.01.046

С

Latent Bone Metastasis in Breast Cancer Tied to Src-Dependent Survival Signals

Xiang H.-F. Zhang,^{1,6} Qiongqing Wang,^{1,6} William Gerald,² Clifford A. Hudis,³ Larry Norton,³ Marcel Smid,⁴ John A. Foekens,⁴ and Joan Massagué^{1,5,*} ¹Cancer Biology and Genetics Program ²Department of Pathology ³Department of Medicine Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA ⁴Department of Medical Oncology, Erasmus Medical Center Rotterdam, Josephine Nefkens Institute and Carcer Genomics Centre, 3015 GE Rotterdam, the Netherlands ⁵Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA ⁶These authors contributed equally to this work ^{*}Correspondence: massagu@mskcc.org DOI 10.1016/j.ccr.2009.05.017

Organ specific metastases

original magnification, $\times 10.$ **e**, Schematic model of organ-specific metastatic extravasation of breast cancer cells. Extravasation into the bone marrow is a relatively permissive process owing to the fenestrated endothelium lining the sinusoid capillaries. Extravasation into the pulmonary or brain parenchyma requires specific functions for breaching the non-fenestrated capillary walls of these organs. Shared mediators of extravasation include, among others, *COX2* and EGFR ligands such as epiregulin and *HBEGF*. Passage through the BBB requires further mediators including, but not limited to, the brainspecific sialyltransferase *ST6GALNAC5*. Competence to colonize each organ requires additional mediators.

Cancer Stem Cells vs Clonal Evolution

[Cell Cycle 6:19, 2332-2338, 1 October 2007]; @2007 Landes Bioscience

Perspective

Breast Tumor Heterogeneity

Cancer Stem Cells or Clonal Evolution?

Lauren L. Campbell^{1,2} Kornelia Polyak^{1-3,*}

The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells

Sendurai A. Mani,^{1,3,10,*} Wenjun Guo,^{1,10} Mai-Jing Liao,^{1,10} Elinor Ng. Eaton,¹ Ayyakkannu Ayyanan,⁴ Alicia Y. Zhou,^{1,2} Mary Brooks,¹ Ferenc Reinhard,¹ Cheng Cheng Zhang,¹ Michail Shipitsin,^{5,6} Lauren L. Campbell,^{5,7} Kornelia Polyak,^{5,6,7} Cathrin Brisken,⁴ Jing Yang,⁸ and Robert A. Weinberg^{1,2,9,*}

Figure 3. Stem-like CD44^{high}/CD24^{low} Cells Isolated from HMLE Cells Exhibit Attributes of Cells that Have Undergone an EMT

Induction of EMT results in acquisition of stem cell properties

