Germline Testing for Hereditary Cancer with Multigene Panel

Po-Han Lin, MD Department of Medical Genetics National Taiwan University Hospital 2017-04-20

Disclosure

No relevant financial relationships with commercial interests to disclose

Mechanism of carcinogenesis

Cancer 2004;**4**, 638-644

Genetic variants that predispose to breast cancer.

Ann Surg Oncol. 2014 Oct;21(10):3209-15

Science 343, 1466 (2014);

Genetic Architecture of Cancer Risk

https://www.cancer.gov/about-cancer/causes-prevention/genetics/overview-pdq

Genetics in cancer

- High penetrance: *TP53*, *BRCA1*, *BRCA2*, *CDH1*, *APC*, *MLH1*, *MSH2*, *STK11*
- Moderate penetrance: *ATM*, *BRIP1*, *CHEK2*
- Low penetrance: GWAS SNPs

What kinds of genes determine genetic predisposition to breast cancer?

High-penetrance Single/Few Low-penetrance Multiple/Many

BRCA1, BRCA2 (>20-fold risk)

Genetics in cancer

Hereditary cancer: from moderate-to-high penetrance genes

Clinical management is required for moderate-to-high penetrance genes; Evaluation for low-penetrance alleles is **not** currently part of standard clinical evaluation for breast cancer

Another subset (15-25%) may be due to an interaction between multiple genes and the environment and they too can result in cancers clustering in families

Annals of Oncology 26: 1291–1299, 2015

Clinical management of hereditary cancer syndrome

- Identification: selection criteria of hereditary cancer
- Genetic counseling
- Gene test
- Post-genetic counseling
- Management
 - Cancer prevention
 - Screening
 - Treatment

Family history and young age are the most important criteria to select patients

National Comprehensive NCCN Cancer Network[®]

NCCN Guidelines Version 1.2017 Breast and/or Ovarian Cancer Genetic Assessment

CRITERIA FOR FURTHER GENETIC RISK EVALUATION^a

- An individual with an ovarian^e cancer
- An individual with a breast cancer diagnosis meeting any of the following:
- A known mutation in a cancer susceptibility gene within the family
- Early-age-onset breast cancer^b
- > Triple negative (ER-, PR-, HER2-) breast cancer diagnosed ≤60 y
- Two breast cancer primaries^C in a single individual
- Breast cancer at any age, and
 - ◊ ≥1 close blood relative^d with breast cancer ≤50 y, or ◊ ≥1 close blood relative^d with invasive ovarian^e
 - ◊ ≥1 close blood relative^d with invasive ovarian^e cancer at any age, or
 - ◊ ≥2 close blood relatives^d with breast cancer and/or pancreatic cancer at any age, or
 - Pancreatic cancer at any age, or
 - From a population at increased risk^f
- Male breast cancer
- An individual of Ashkenazi Jewish descent with breast, ovarian, or pancreatic cancer at any age
- An individual with a personal and/or family history of three or more of the following (especially if early onset^b and can include multiple primary cancers in same individual): breast, pancreatic cancer, prostate cancer (Gleason score ≥7), melanoma, sarcoma, adrenocortical carcinoma, brain tumors, leukemia, diffuse gastric cancer¹, colon cancer, endometrial cancer, thyroid cancer, kidney cancer, dermatologic manifestations^{g,h} and/or macrocephaly, hamartomatous polyps of gastrointestinal (GI) tract^h

- An individual with no personal history of cancer but with
 - A close relative with any of the following:^{d,f}
 - A known mutation in a cancer susceptibility gene within the family
 - ◊ ≥2 breast cancer primaries in a single individual
 - ◊ ≥2 individuals with breast cancer primaries on the same side of family with at least one diagnosed ≤50 y
 - ◊ Ovarian^e cancer
 - Male breast cancer
- First- or second-degree relative with breast cancer ≤45 y

Family history of three or more of the following (especially if early onset^b and can include multiple primary cancers in same individual): breast, pancreatic cancer, prostate cancer (Gleason score ≥7), melanoma, sarcoma, adrenocortical carcinoma, brain tumors, leukemia, diffuse gastric cancer¹, colon cancer, endometrial cancer, thyroid cancer, kidney cancer, dermatologic manifestations^{g,h} and/or macrocephaly, hamartomatous polyps of GI tract^h Consider referral to cancer genetics professional^j

Pre-test counseling

- Collection of a comprehensive family history
 - Note that when assessing family history, close blood relatives include first-, second-, and thirddegree relatives on each side of the family

- Evaluation of a patient's cancer risk
- Generating a differential diagnosis
- Educating the patient on inheritance patterns, penetrance, variable expressivity, and the possibility of genetic heterogeneity
- Preparing the patient for possible
- Obtaining informed consent

Gene test

- Proband: appropriate high-risk individuals where it will impact the medical management of the tested individual and/or their at-risk family members
- Comprehensive genetic testing: full sequencing and testing for large genomic rearrangements
- Syndrome vs. gene

Version 1.2017 NCCN guideline: Genetic/Familial High-Risk Assessment : Breast and Ovarian

Multi-gene testing

- A set of genes that are associated with a specific family cancer phenotype or multiple similar phenotypes.
- Next-generation sequencing (NGS) can simultaneously test multiple genes

Hereditary breast cancer syndromes

Hereditary colorectal cancer syndromes

Ann Surg Oncol. 2014 Oct;21(10):3209-15

CMAJ. 2009 Sep 1;181(5):273-80

Gene panel for breast cancer risk analysis

Gene panel (Institution)	High-penetrance breast genes	Moderate-penetrance breast genes	Additional genes
BROCA [76] (University of Washington, Seattle, WA, USA)	BRCA1, BRCA2, CDH1, PTEN, STK11, TP53	ATM, BRIP1, CHEK2, PALB2	AKT1, APC, ATR, BABAM1, BAP1, BARD1, BMPR1A, CDK4, CDKN2A, CHEK1, CTNNA1, EPCAM, FAM175A, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PIK3CA, PMS2, POLD1, POLE, PRSS1, RAD50, RAD51, RAD51C, RAD51D, RET, SDHB, SDHC, SDHD, SMAD4, TP53BP1, VHL, XRCC2
ColoSeq [77] (University of Washington)	CDH1, PTEN, STK11, TP53		AKT1, APC, BMPR1A, EPCAM, GALNT12, GREM1, MLH1, MSH2, MSH6, MSH6, MUTYH, PIK3CA, POLD1, POLE, PMS2, SMAD4
BreastNext [78] (Ambry Genetics, Aliso Viejo, CA, USA)	BRCA1, BRCA2, CDH1, PTEN, STK11, TP53	ATM, BRIP1, CHEK2, PALB2	BARD1, MRE11A, MUTYH, NBN, NF1, RAD50, RAD51C, RAD51D
OvaNext [78] (Ambry Genetics)	BRCA1, BRCA2, CDH1, PTEN, STK11, TP53	ATM, BRIP1, CHEK2, PALB2	BARD1, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, NF1, PMS2, RAD50, RAD51C, RAD51D
CancerNext [78] (Ambry Genetics)	BRCA1, BRCA2, CDH1, PTEN, STK11, TP53	ATM, BRIP1, CHEK2, PALB2	APC, BARD1, BMPR1A, CDK4, CDKN2A, EPCAM, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PMS2, RAD50, RAD51C, RAD51D, SMAD4
Breast Cancer High-Risk Panel [79] (GeneDx, Gaithersburg, MD, USA)	BRCA1, BRCA2, CDH1, PTEN, STK11, TP53		
Breast/Ovarian Cancer Panel [79] (GeneDx)	BRCA1, BRCA2, CDH1, PTEN, STK11, TP53	ATM, BRIP1, CHEK2, PALB2	BARD1, BLM, EPCAM, FAM175A, FANCC, HOXB13, MLH1, MRE11A, MSH2, MSH6, NBN, PMS2, RAD50, RAD51C, RAD51D, XRCC2
Comprehensive Cancer Panel [79] (GeneDx)	BRCA1, BRCA2, CDH1, PTEN, STK11, TP53	ATM, BRIP1, CHEK2, PALB2	APC, AXIN2, BARD1, BMPR1A, BLM, CDK4, CDKN2A, EPCAM, FAM175A, FANCC, HOXB13, MLH1, MRE11A, MSH2, MSH6, MUTYH, NBN, PALLD, PMS2, RAD50, RAD51C, RAD51D, SMAD4, VHL, XRCC2
Hereditary High-Risk Breast Cancer Panel [80] (Baylor College of Medicine, Houston, TX, USA)	BRCA1, BRCA2, CDH1, PTEN, STK11, TP53	PALB2	

Annals of Oncology 26: 1291–1299, 2015

Genetic variants with predisposing to malignancy

- Tumor suppressor genes
 - TP53 (Li–Fraumeni syndrome), PTEN (Cowden syndrome)
- DNA repair genes
 - Homologous recombination: *BRCA1, BRCA2, NBS1, FANCA, FANCC, FANCM, RAD51, RAD51C, RAD51D, and XRCC2*
 - Mismatch repair: MSH2, MLH1, MSH6
- Others
 - STK11: Peutz-Jeghers syndrome

The Breast 28 (2016) 136e144

Selected target genes: Multigene-sequencing for hereditary cancer syndrome in NTUH: a customized 68 genes panel

syndrome

DNA repair gene

Whole gene, including exon, intron promoter region, 5'-UTR and 3'-UTR

 Next-generation sequencing
 ARLTS1, ATM, BARD1, BRCA1, BRCA2, PTEN, RECQL, TP53, genes in HR pathway, other-associated genes

> Capture-based target enrichment -> sequencing on Illumina platform

> > Oncotarget. 2016;7(7):8310-20

В

Gene	Patient number
ATM	1
BRCA1	9
BRCA2	11
BRIP1	1
FANCI	1
MSH2	1
MUTYH	1
RAD50	2
RAD51C	1
TP53	2

Benefit of multiple gene testing in hereditary cancer syndromes

- Efficient: to identify more cases carrying pathogenic actionable genetic variants
 - Finding the actionable genes in additional 11.6% cases with familial history, by a 42 gene panel
 - Finding the actionable genes in additional 7.5% cases with familial history/early-onset in NTUH study
- Cost-effective:
 - Cost per gene or per base of NGS

J Clin Oncol. 2014 Jul 1;32(19):2001-9

Questions raising after multiple gene sequencing

- How many genes need to be sequenced ?
- Increased number of genetic variants of uncertain significance (VUS)
- Post-test genetic counseling and clinical management in non-BRCA genes

Design a gene panel

In the setting of whole exome/genome sequencing, more and more moderate penetrance genes are identified.

Non-BRCA gene contribute to ~50% hereditary breast ca

Buys SS et al. Cancer. 2017 Jan 13. in press

Deleterious mutations on non-*BRCA* genes in the four studies

NTUH	Kurian AW et al.	Couch FJ et al.	Buys SS et al.		Combination of three studies	
N=133	N=198	N=1824	N=35	N=35409		
ATM	ATM	ATM	APC	NBN	APC	MUTYH
BRIP1	BLM	BARD1	ATM	PALB2	ATM	NBN
FANCI	CDH1	BRIP1	BARD1	PMS2	BARD1	PALB2
MSH2	CDKN2A	MRE11A	BRIP1	PTEN	BLM	PMS2
MUTYH	MLH1	NBN	CDH1	RAD51C	BRIP1	PRSS1
RAD50	MUTYH	PALB2	CDKN2A	RAD51D	CDH1	PTEN
RAD51C	NBN	PTEN	CHEK2	SMAD4	CDKN2A	RAD50
TP53	PRSS1	RAD50	EPCAM	STK11	CHEK2	RAD51C
	SXL4	RAD51C	MLH1	TP53	EPCAM	RAD51D
		RAD51D	MSH2		FANCI	SMAD4
		TP53	MSH6		MLH1	STK11
		XRCC2	MUTYH		MRE11A	SXL4
					MSH2	TP53
					MSH6	XRCC2

Buys SS et al. Cancer. 2017 Jan 13. in press

Couch FJ et al. J Clin Oncol 2015; 33: 304-311 Kurian AW et al. J Clin Oncol 2014; 32: 2001-2009

Variants of uncertain significance (VUS)

- Interpretation of genetic variants Based on ACMG guideline
 - Pathogenic, likely pathogenic, uncertain significance, likely benign, benign
- Large-scale deletion, frame-shift mutation, nonsense mutation, genetic variants associated with uncorrected splicing, and mutations affecting protein function demonstrated by functional analyses are considered as deleterious or pathogenic mutations.
- Population frequency, less than 1%

Variants of uncertain significance (VUS)

- Number od VUS rapidly raised in the multiple gene sequencing
- VUSs cause the clinical problems, including difficult to genetic counseling and unable to guide patient therapy
- Bioinformatics analysis: SIFT, PolyPhen-2, CADD; REVEL scores
- Family segregation analysis
- Epidemiological phenotype-genotype study
- Functional assay

Hum Mutat. 2012 Jan;33(1):8-21

Am J Hum Genet. 2016 Oct 6;99(4):877-885

Post-test genetic counseling and clinical management in non-*BRCA* genes

- High penetrance gene: aggressive screening or prophylactic surgery
- The appropriate management of individuals harboring moderate-penetrance genetic variants is unclear.

• CLTR, cumulative lifetime risk

Cancer type	Gene	Average relative risk
Breast cancer	ATM ³	2.8 (90% CI 2.2–3.7)
	BARD1	Insufficient data
	BRIP1 (REFS 3,20)	No evidence of association
	CHEK2 (truncating) ³	3.0 (90% Cl 2.6–3.5)
	CHEK2 (missense)47	1.58 (95% Cl 1.42–1.75) for I157T
	MRE11A	Insufficient data
	NBN ⁶⁸	2.7 (90% Cl 1.9–3.7) for c.657del5
	PALB2 ³	5.3 (90% Cl 3.0–9.4)
	RAD50	Insufficient data
	RAD51C/RAD51D ³	No evidence of association
	XRCC2	Insufficient data
	SLX4	Insufficient data

Nat Rev Clin Oncol. 2016 Sep;13(9):581-8

Principle for non-BRCA genes

- A general quantitative approach that can be adapted to the individualized level of cancer risk, independent of the specific gene variant detected.
 - *ATM* mutation c.7271T>G (p.V2424G): high penetrance
 - CHEK2 I157T and S428F: low penetrance
- Annual mammography beginning at 25–30 years of age (or 10 years before the earliest age at diagnosis of the affected relatives, whichever is later) for women with an estimated LTR of ≥20% based on a family-history model
- Annual MRI: for women with an estimated LTR of \geq 20%
- Whether mastectomy will provide a survival advantage to women with moderate-penetrance mutations is uncertain -> considering the effectiveness of breastcancer screening and treatment.

Proposed management for moderatepenetrance breast-cancer predisposition

Gene	Mammography (clinical breast examination and/or breast MRI	RRSO	Colonoscopy	Pancreatic screening
ATM	Annual starting at 40*	Family history [∥]	Family history#	Clinical trial
CHEK2 (truncating)	Annual starting at 40* [‡]	Family history [∥]	Discuss at 40 years	NA
NBN	Annual starting at 40*	Family history [∥]	Family history#	NA
PALB2	Annual starting at 30	Family history [∥]	Family history#	Clinical trial
BRIP1/RAD51C/ RAD51D	Family history [§]	50–55 years ¹	Family history [#]	NA

Nat Rev Clin Oncol. 2016 Sep;13(9):581-8

Management for moderate-penetrance breast-cancer predisposition (NCCN)

NCCN National Comprehensive Cancer Network®

NCCN Guidelines Version 1.2017

Genetic/Familial High-Risk Assessment: Breast and Ovarian

NCCN Guidelines Inde Table of Content Discussion

BREAST AND OVARIAN MANAGEMENT BASED ON GENETIC TEST RESULTS^a

The inclusion of a gene on this table below does not imply the endorsement either for or against multi-gene testing for moderatepenetrance genes.

<u>Gene</u>	Breast Cancer Risk and Management	Ovarian Cancer Risk and Management	Other Cancer Risks and Management	
PALB2	Increased risk of BC Screening: Annual mammogram and consider breast MRI with contrast at 30 y RRM: Consider based on family history. 	Unknown or insufficient evidence for OC risk	Unknown or insufficient evidence	
	Comments: Counsel for risk of autosomal recessive condition in offspring.			
PTEN	Increased risk of BC • See Cowden Syndrome Management No increased risk of OC		See Cowden Syndrome Management	
	Unknown or insufficient evidence for BC risk Increased risk of OC • Consider RRSO at 45–50 y		N/A	
RAD51C	Comments: Counsel for risk of autosomal recessive condition in offspring. Based on estimates from available studies, the lifetime risk of ovarian cancer in carriers of mutations in <i>RAD51C</i> appears to be sufficient to justify consideration of RRSO. The current evidence is insufficient to make a firm recommendation as to the optimal age for this procedure. Based on the current, limited evidence base, a discussion about surgery should be held around age 45–50 y or earlier based on a specific family history of an earlier onset ovarian cancer.			
	Unknown or insufficient evidence for BC risk - Consider RRSO at 45–50 y		N/A	
RAD51D	Comments: Based on estimates from available studies, the lifetime risk of ovarian cancer in carriers of mutations in <i>RAD51D</i> appears to be sufficient to justify consideration of RRSO. The current evidence is insufficient to make a firm recommendation as to the optimal age for this procedure. Based on the current, limited evidence base, a discussion about surgery should be held around age 45–50 y or earlier based on a specific family history of an earlier onset ovarian cancer.			
STK11	Increased risk of BC • Screening: <u>See NCCN Guidelines for</u> <u>Genetic/Familial High-Risk Assessment:</u> <u>Colorectal</u> • RRM: Evidence insufficient, manage based on family history.	Increased risk of non-epithelial OC • See NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal	See NCCN Guidelines for Genetic/Familial High- Risk Assessment: Colorectal	
TP53	Increased risk of BC • See Li-Fraumeni Syndrome Management	No increased risk of OC	See Li-Fraumeni Syndrome Management	

Summary

- Hereditary cancer syndrome defined as having a risk almost entirely attributable to germline mutations in a single gene (moderate-to-high penetrance)
- A set of genes that are associated with a specific family cancer phenotype or multiple similar phenotypes
- Multiple gene panel testing is an effective method for germline mutation screening of cancer predisposing genes

Summary

- Many VUS are identified, needing further study
- Risk and clinical management of moderate penetrance genes are not well defined

Thank you for attention