New Therapeutic Strategy for CNS Metastases in Breast Cancer

Hee Kyung Ahn, MD

Assistant Professor

Division of Hematology and Oncology
Gachon University Gil Medical Center
Incheon, Rep. of Korea

Contents

- Clinical characteristics of breast cancer brain metastases (BCBM)
- Prognostic assessement for BCBM
- Current status of new targeted therapeutics for BM
 - Targeting blood brain barrier
 - Anti-HER2 treatment
 - Immunotherapeutic approaches
 - Others

Brain Metastases and Breast Cancer

Brain metastases(BM)

- Most common intracranial malignancy in adults
- Originating from lung cancer(40-50%), breast cancer(15-25%), melanoma(5-20%), and renal cell carcinoma

Unmet need of BM

- median survival of less than 6 months for decades
- neurologic impairment major limitation of QOL
- underrepresented population of clinical trials due to poor prognosis and presumed lack of intracranial efficacy of drug

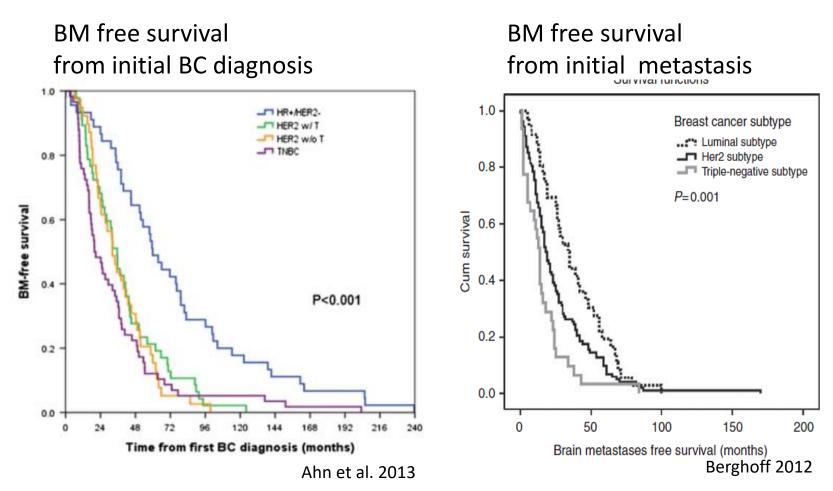
➤ Increasing prevalence of BCBM as a result of

- True increase in incidence due to effective treatment of systemic disease and improved survival from diagnosis of primary cancer
- Improved imaging modalities and detection of subclinical disease earlier

In the beginning of BC-BM, 'HER2+ BC'

- After introduction of trastuzumab in late 1990s, clinicians began to observe an apparent increase in the incidence of BM
- Small retrospective studies of HER2(+) metastatic BC patients
 Who were treated in late 1990s ~ early 2000s
 Incidence of BM 25-48%
 Median survival from BM 4-13 months
 50 % of patients died of progressive CNS disease
 Greater risk of isolated CNS progression

Increased incidence of BM in HER2+ BC
Poor CNS penetration of trastuzumab?
Unmasking of otherwise asymptomatic BM by prolonged survival?
Biology-linked brain tropism?

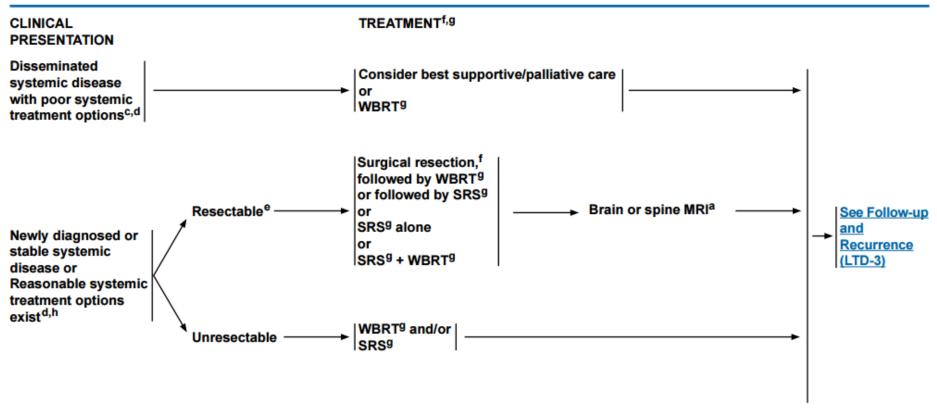

Differences in clinical features of BM & BC subtypes

Reference	# Patients	Period	ER(+) Incidence Median survival	HER2(+) Incidence Median survial	TNBC Incidence Median survival
Retrospective	e studies on meta	astatic disea	ase		
Bendell 2003	Stage IV N=122 (42 BM) Median f/u 23 mo	1998-2000	-	34% 13mo	-
Nam 2008	Stage IV N=682 (126 BM) Median f/u 31 mo	2001-2006	8% 7.3mo	25% 13mo	25% 3.4mo
Lin 2008	Stage IV N=116 (53 BM)	2000-2006	-	-	46% 4.9 mo
Eichler 2008	N=83 BM	2001-2005	11.0mo	17.1mo	4.0 mo
Metro 2011	N=81 (30 BM)	2006-2009	-	27.9mo	-
Park 2009	N=251 (77 BM)	1999-2006	-	14.9 mo	-
Yap 2012	N=280 BM	2006-2008	-	18.5 mo	-

[•] Incidence of BM: HER2(+) & TNBC > ER(+)

• Survival of BM : HER2(+) > ER(+) > TNBC

Timing of BM occurrence according subtype of BC

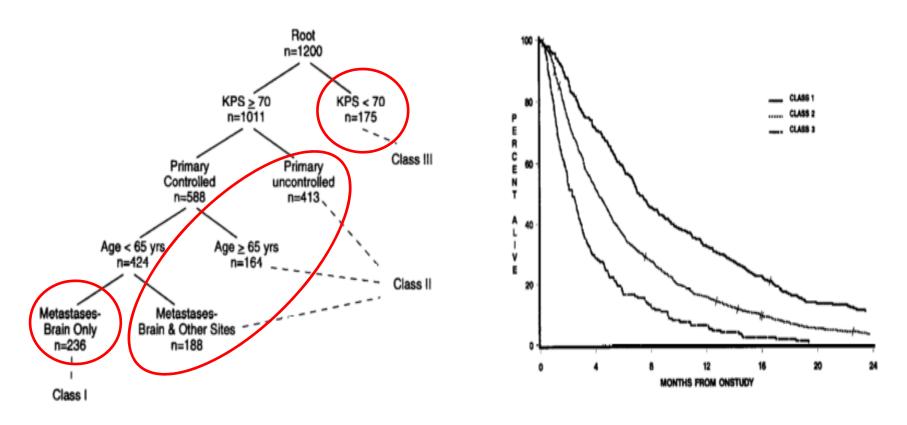

Duration of BM free survival : ER(+) > HER2(+) > TNBC

→ Need for identification of high-risk population and early preventive intervention?

Initial management of BM

- Despite increasing knowledge of different behavior of BM according to tumor subtype,
- Primary tumor-adapted guidelines for BM treatment is lacking
- Current standard treatment option for BM is local treatment including
 - Surgery
 - Stereotactic radiosurgery (SRS)
 - Whole brain radiotherapy (WBRT)
- Initial assessment of prognosis is important
 - To predicting the results of therapeutic interventions
 - To comparing treatment results in clinical trials

NCCN Guidelines Version 1.2016 Limited (1–3) Metastatic Lesions

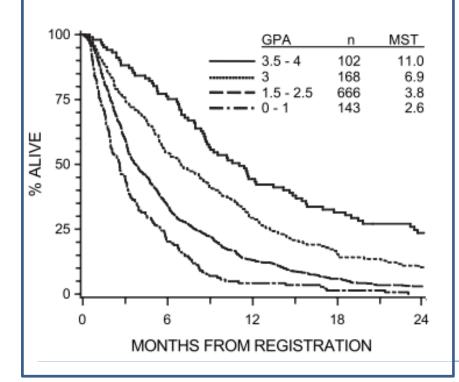


- Current standard treatment option for BM are local treatments including
 - Surgery
 - Stereotactic radiosurgery (SRS)
 - Whole brain radiotherapy (WBRT)
- Initial assessment of prognosis is important
 To predicting the results of therapeutic interventions
 To comparing treatment results in clinical trials

Recursive Partitioning Analysis (RPA)

- 1200 pts from three RTOG trials (1979-1993)
- Primary cancer: Lung 61%, Breast 12%, Others 21%
- Median survival

: 2.3 months (Class 3) vs. 4.2 months (Class 2) vs. 7.1 months (Class 1)



Graded Prognostic Assessment (GPA)

1,960 patients from five RTOG trials

GPA index

	Score			
	0	0.5	1.0	
Age	>60	50-59	<50	
KPS	<70	70-80	90-100	
No. of CNS metastases	>3	2-3	1	
Extracranial metastases	Present	_	None	

Basic Score for Brain Metastases (Lorenzoni 2004)

	Score	
	0	1
KPS	50-70	80-100
Control of primary tumor	No	Yes
Extracranial metastases	Yes	No

Score Index for Radiosurgery (Weltman 2000)

		Score		
	0	1	2	
Age (y)	≥60	51-59	≤50	
KPS	≤50	60-70	80-100	
Systemic disease	Progressive	Stable	CR or NED	
No. of lesions	≥3	2	1	
Volume of largest lesion (ml)	>13	5–13	<5	

Diagnosis-specific GPA

4,529 patients from 1985-2007

GPA of newly diagnosed BMs	Significant prognostic factors	G	PA scor	ring crite	ria
NSCLC/SCLC		0	0.5	1	
	Age	>60	50-60	< 50	
	KPS	< 70	70-80	90-100	
	ECM	Present	_	Absent	
	No. of BMs	>3	2-3	1	
Melanoma/		0	1	2	
renal cell cancer					
	KPS	< 70	70-80	90-100	
	No. of BMs	>3	2-3	1	
Breast/GI cancer		0	1	2	3 4
	KPS	<70	70	80	90 100

		DS-GPA				
Diagnosis	Overall	0-1.0	1.5-2.5	3.0	3.5-4.0	p* (log-rank)
NSCLC	7.00 (6.53-7.50)	3.02 (2.63-3.84)	6.53 (5.90-7.10)	11.33 (9.43-13.10)	14.78 (11.79–18.80)	<.0001
SCLC	4.90 (4.30-6.20)	2.79 (2.04-3.12)	5.30 (4.63-6.83)	9.63 (7.50-14.95)	17.05 (6.10-27.43)	<.0001
Melanoma	6.74 (5.90-7.57)	3.38 (2.73-4.27)	4.70 (4.17-5.42)	8.77 (6.83-10.77)	13.23 (9.40-15.64)	<.0001
RCC	9.63 (7.66-10.91)	3.27 (2.17-5.10)	7.29 (3.73-10.91)	11.27 (8.83-14.80)	14.77 (9.72-19.79)	<.0001
Breast cancer	11.93 (9.69-12.85)	6.11 (3.88-8.28)	9.37 (7.92-11.24)	16.89 (13.96-19.90)	18.74 (11.31-29.37)	<.0001
GI cancer	5.36 (4.30-6.30)	3.13 (2.40-4.57)	4.40 (3.37-6.53)	6.87 (5.03–11.63)	13.54 (9.92-27.12)	<.0001
Other	6.37 (5.22-7.49)	_	_	_	_	_
Total	7.23 (6.90-7.60)	3.43 [†] (3.02–3.84)	6.40 [†] (5.78–6.90)	11.56 [†] (10.47–12.78)	14.77 [†] (12.85–17.05)	<.0001 [†]

Refined Diagnosis-specific GPA

Incorporation of tumor subtype of breast cancer

Non–small-cell and small-ce	•	GP	A Scoring		Patient	
	Prognostic Factor	0	0.5	1.0	Score	
	Age, years	> 60	50-60	< 50		
	KPS	< 70	70-80	90-100		
	ECM	Present	_	Absent		
	No. of BM	> 3	2-3	1		
	Sum total					
Median s	urvival (months) by GPA: 0-1.0) = 3.0; 1.5-2.0 =	5.5; 2.5-3	0 = 9.4; 3.5-4.	.0 = 14.8	
Melanoma		GP	A Scoring	Criteria	Patient	
	Prognostic Factor	0	1.0	2.0	Score	
	KPS	< 70	70-80	90-100		
	No. of BM	> 3	2-3	1		
	Sum total			-		
Median s	urvival (months) by GPA: 0-1.0) = 3.4; 1.5-2.0 =	4.7; 2.5-3	0 = 8.8; 3.5-4.	.0 = 13.2	
Breast cancer		GP	A Scoring	Criteria	Patient	VDC
	Prognostic Factor		1.0 1.		Score	KPS
	_	≤ 50 60 70	-80 90-10	0 n/a		
	Subtype B	asal n/a Lu	mA HER	2 LumB		C la 4 a
			n/a n/			⊣ Suptvbe
	Sum total					7 1 2 2 2 2 2
Median s	urvival (months) by GPA: 0-1.0) = 3.4; 1.5-2.0 =	7.7; 2.5-3	0 = 15.1; 3.5-4	4.0 = 25.3	Subtype Age
Renal cell carcinoma		GP	A Scoring	Criteria	Patient	Age
torial con caronionia	Prognostic Factor	0	1.0	2.0	Score	
	KPS	< 70	70-80	90-100	00010	
	No. of BM	> 3	2-3	1		
	Sum total	- 0	2 0			
Median e	urvival (months) by GPA: 0-1.0) - 3 3 1 5 2 0 -	73.25.3	n = 11 3·3 5 ₋ /	10 - 148	
Median s	arvivar (months) by Gr A. 0-1.0	7 = 3.3, 1.3-2.0 =	- 7.5, 2.5-5.	0 = 11.5, 5.5-	4.0 = 14.0	
		GP	A Scoring	Criteria	Patient	
GI cancers			_		Score	
31 cancers	Prognostic Factor	0 1		3 4	Score	
3I cancers		<u>0 1</u> < 70 70		3 4 0 100	Score	

Anti-HER2 Tx and Survival after BM

	Anti-HER2 Tx (+)	Anti-HER2 Tx (-)	
Bendell 2003	N=42 13 months		Trastuzumab before onset of BM (n=31) After onset of BM (n=9)
Nam 2008	N=21 12.8 months	N=35 4.0 months	Trastuzumab after onset of BM
Park 2009	N=42 14.9 months	N=35 4.0 months	Trastuzumab
Yap 2012	N=114 18.5 months	N=168 5.7 months	Trastuzumab or Lapatinib

Anti-HER2 treatment improves survival from BM diagnosis

Extracranial disease status and Prognosis of BM from BC

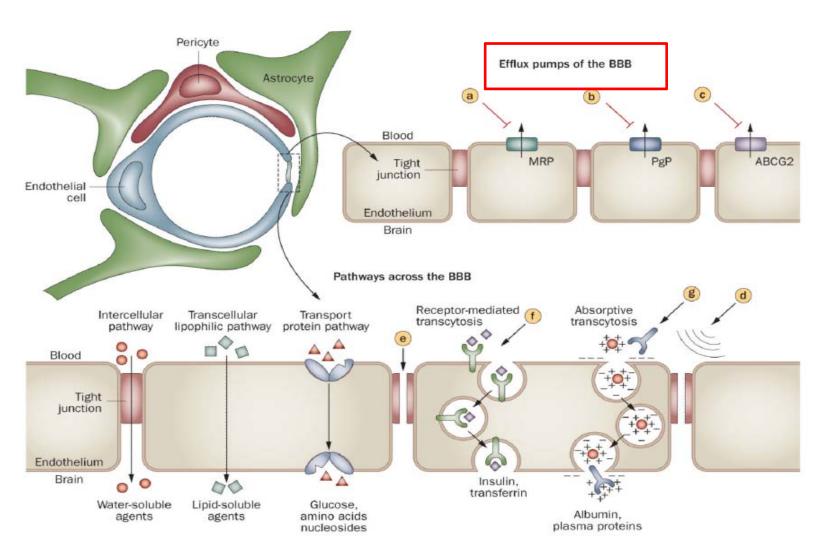
➤ Retrospective study on 51 patients with BM who received SRS

	Sperduto et al. (2) Reference for MST	Data from current study MST (and no.) by group	Subgroup by ECD Status	MST (and no.) by subgroup*
Group (score)				
1 (0.0-1.0)	3.4 mo	NA (n = 2)	Absent/stable	NA (n = 1)
			Progressive	NA (n = 1)
2 (1.5-2.0)	7.7 months	8.2 months (n = 12)	Absent/stable	74.7 mo (N = 3)
			Progressive	8.2 mo (n = 9)
3 (2.5-3.0)	15.1 mo	18.7 months (n = 21)	Absent/stable	31.2 mo (n = 8)
			Progressive	8.5 mo (n = 13)
4 (3.5-4.0)	25.3 mo	22.8 months (n = 14)	Absent/stable	NR (n = 6)
			Progressive	19.7 mo (n = 8)

➤ Multivariate analysis on survival from BM in a retrospective study (n=171)

	Hazard Ratio (HR)	P value	95% CI
KPS ≥70	0.51	.0002	0.36-0.74
Age <70	0.23	.002	0.09-0.60
HER2 positivity	2.06	.005	1.24-3.45
Trastuzumab use	0.54	.017	0.33-0.90
Triple negativity	2.03	.002	1.29-3.18
Extracranial disease control	0.57	.002	0.41-0.81

Initial Consideration in BM Treatment


- Number, size, location of BM & Resectability
- Mass effect/neurological symptoms
- Prognosis (Expected survival)
 - Performance status
 - Age
 - Status of extracranial disease
 - Subtype of breast cancer
 - → Aggressive local treatment in patients with good prognosis

Challenges in targeting therapeutics of BM

Impressions from HER2+ BCBM

- ✓ Poor intracranial penetration of systemic drug
 - → better penetration of BBB?
- ✓ Biology linked brain tropism of cancer
 - → targeting processes BM
- ✓ Extracranial disease control

Targeting Blood-Brain Barrier for better drug penetration

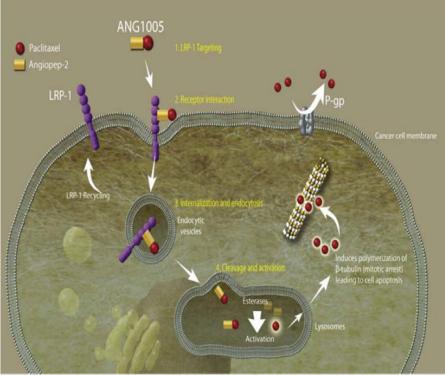
Passage of large hydrophilic molecules is difficult without receptor mediated transcytosis

ANG1005: A peptide drug conjugate (Angiopep-2+Paclitaxel)

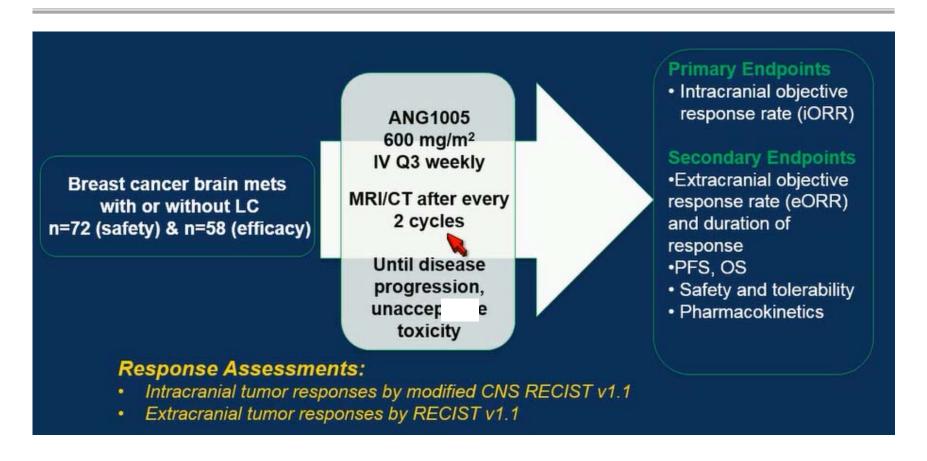
LRP-1 Receptor-mediated transcytosis across the BBB

Peptide-Drug Conjugate

1. LRP-1 targeting


1. LRP-1 targeting

1. LRP-1 Recycling


1. LRP-1 Recycling

1. Resease of Repitite Drug Conjugate

LRP-1 Receptor-mediated endocytosis into tumor cells

A Phase II trial of ANG1005 for BC-BMs (ANG1005-CLN-04)

- Enrolled patients were heavily pretreted for BM from BC
 - ✓ Median time from initial BM 1.0 year
 - ✓ HER2+ 42%, TNBC 26%
 - ✓ Leptomeningeal carcinomatosis 39%
 - ✓ Prior intracranial RT 84%
 - ✓ Prior taxane 84%

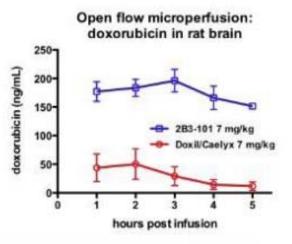
Efficacy of ANG1005 for BM from BC

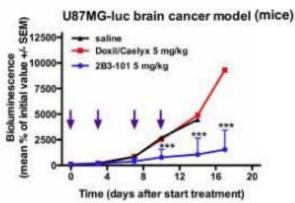
Intracranial Objective Response Rate (Per-Protocol Patients)

	All Patients	HER2+	HER2-
Sample size, na	58	28	30
PR, n (%)	8 (14%)	4 (14%)	4 (13%)
Confirmed PR, n (%) ^b	3 (5%)	2 (7%)	1 (3%)
SD, n (%)	33 (57%) ^c	19 (68%) ^c	14 (47%)
PD, n (%)	17 (29%)	5 (18%)	12 (40%)
Clinical benefit (SD+PR), (%)	71%	82%	60%

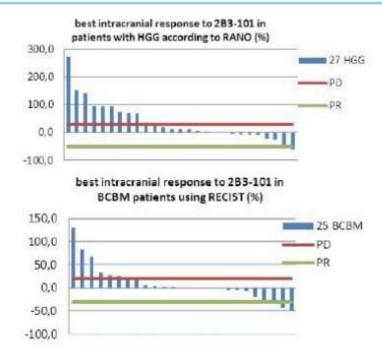
Extracranial Objective Response Rate (Per-Protocol Patients)

	All Patients	HER2+	HER2-
Sample size, na	30	13	17
CR, n (%)	1 (3%)	0	1 (6%)
PR, n (%)	2 (7%)	0	2 (12%)
SD, n (%)	24 (80%)	12 (92%)	12 (70%)
PD, n (%)	3 (10%)	1 (8%)	2 (12%)
Clinical benefit (SD+PR), (%)	80%	92%	82%

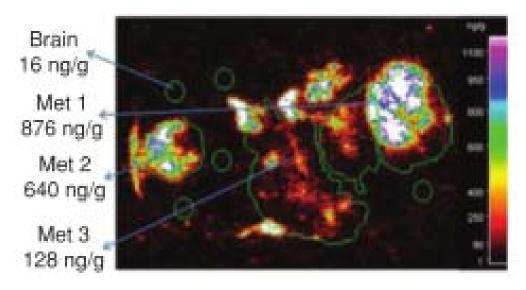

Efficacy of ANG1005 for Leptomeningeal Carcinomatosis


	All LC Patients	HER2+	HER2-
Sample size, n ^a	23	15	8
PR, n (%)	5 (22%)	4 (27%)	1 (13%)
Confirmed PR, n (%)b	2 (9%)	2 (13%)	0
SD, n (%)	12 (52%) ^c	8 (53%) ^c	4 (50%)
PD, n (%)	6 (26%)	3 (20%)	3 (37%)
Clinical benefit (SD+PR), (%)	74%	80%	63%

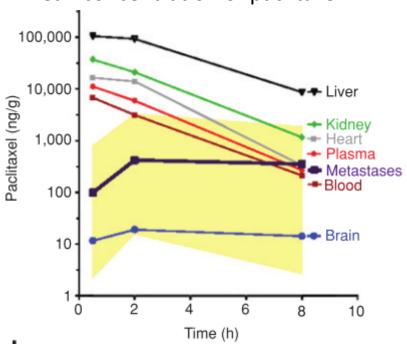
 median survival of patients with LC 8.0 months, OS at 6 moths 63.6% compared with 3-4 months of OS in patients with leptomeningeal carcinomatosis from historical controls


2B3-101: Glutathione PEGylated liposomal doxorubicin

- Glutathione is actively transported across the BBB
- Additional glutatione coating of pegylated liposomal doxorubicin



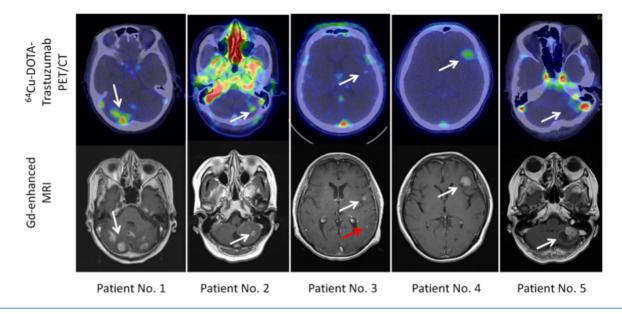
- In a Phase 1/2a study as a single agent or combined with trastuzumab in patients with HER2+ metastatic BC,
 - ✓ 21 BCBM (16 HER2+) were enrolled
 - ✓ intracranial response 19%
 - √ 'PR+SD' 62%
 - √ 12-weeks PFS rate 52%



Heterogenous blood-tumor barrier permeability in experimental BM of BC

Mean concentration of paclitaxel

Partial BTB permeability was compromised in many BMs.

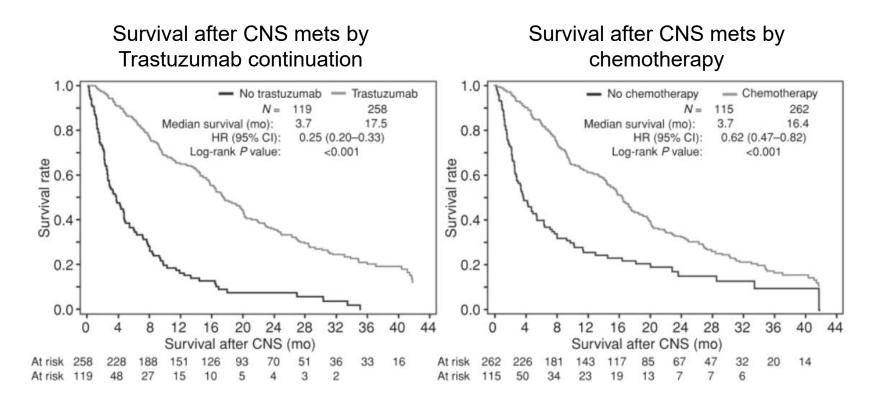

Magnitude of permeability is different within and between BM lesions.

Trastuzumab penetrates blood tumor barrier of BM

❖ 89Zr-trastuzumab uptake in HER2(+) BM

❖ ⁶⁴Cu-DOTA-trastuzumab PET

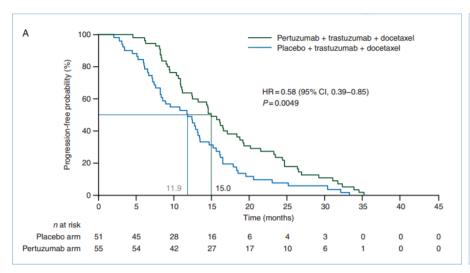
Better Anti-HER2 Tx and Better survival after BM

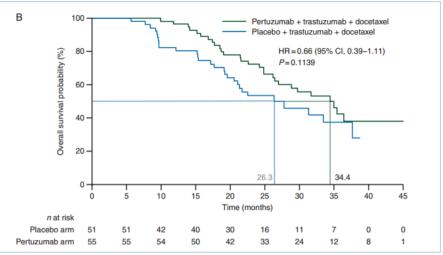

	Anti-HER2 Tx (+)	Anti-HER2 Tx (-)	
Bendell 2003	N=42 13 months		Trastuzumab before onset of BM (n=31) After onset of BM (n=9)
Nam 2008	N=21 12.8 months	N=35 4.0 months	Trastuzumab after onset of BM
Park 2009	N=42 14.9 months	N=35 4.0 months	Trastuzumab
Yap 2012	N=114 18.5 months	N=168 5.7 months	Trastuzumab or Lapatinib

Anti-HER2 treatment improves survival from BM diagnosis

- ✓ Role of extracranial disesase control of anti-HER2 treatment?
- ✓ Role of direct intracranial efficacy?

Role of Trastuzumab continuation for HER2(+) BCBM


> A prospective observational registHER trial



In HER2+ BCBM patients with trastuzumab resistance, continuation of Trastuzumab was associated with longer overall survival.

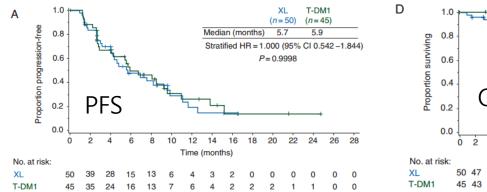
Pertuzumab and CNS metastases

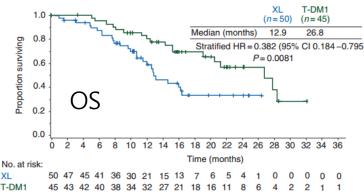
- Exploratory analyses of the incidence and time to CNS mets in patients from CLEOPATRA trial.
- Incidence of CNS mets as first site of disease progression (ITT population)
 : 51 of 406 (12.6%) in control arm vs. 55 of 402 (13.7%) in pertuzumab arm
- Adding Pertuzumab to docetaxel and trastuzumab delays the onset of CNS metastases.

Time to CNS mets as first site of PD

OS in patients who developed CNS mets

Efficacy of T-DM1 for patients of BC with BM

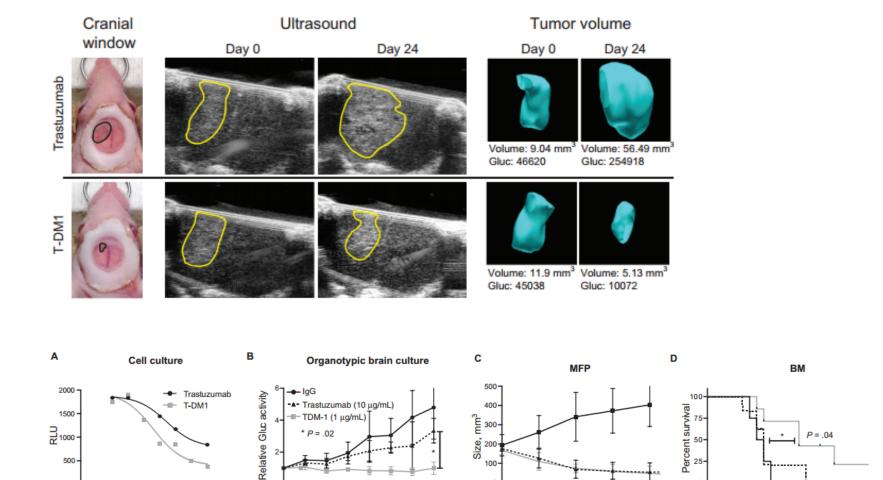

- Subset analysis of TH3RESA trial
- : PFS benefit of T-DM1 compared with physician's choice in patients with asymptomatic or treated BM


Previously treated asymptomati	c brain metastasis								
Yes	67	27	16	2.9	40	24	5.8		0.47 (0.24-0.89)
No	535	171	113	3.6	364	195	6.2	- 	0.53 (0.42-0.66)
								0.5	1 2
							-		
						Favo	ure tracturi	ımah emtansine	Favours physician's choice

Exploratory analysis in EMILIA

95 of 991 had CNS metastases at baseline (45 T-DM1 arm, 50 L+C arm)

T-DM1 vs. L+C : PFS benefit? No / OS benefit? Yes



Similar rate of CNS as a first site of progression in both arms
No baseline - BM 9/450 (2%) of T-DM1 and 3/446 (0.7%) of L+C arm
Baseline BM- 10/45 (22.2%) of T-DM1 and 8/50 (16.0%) of L+C arm

Preclinical intracranial efficacy of T-DM1

500 -

log[C µg/mL]

Days

-IgG --- Trastuzumab (15 mg/kg)

Days

T-DM1 has direct intracranial efficacy for HER2+ BM from BC

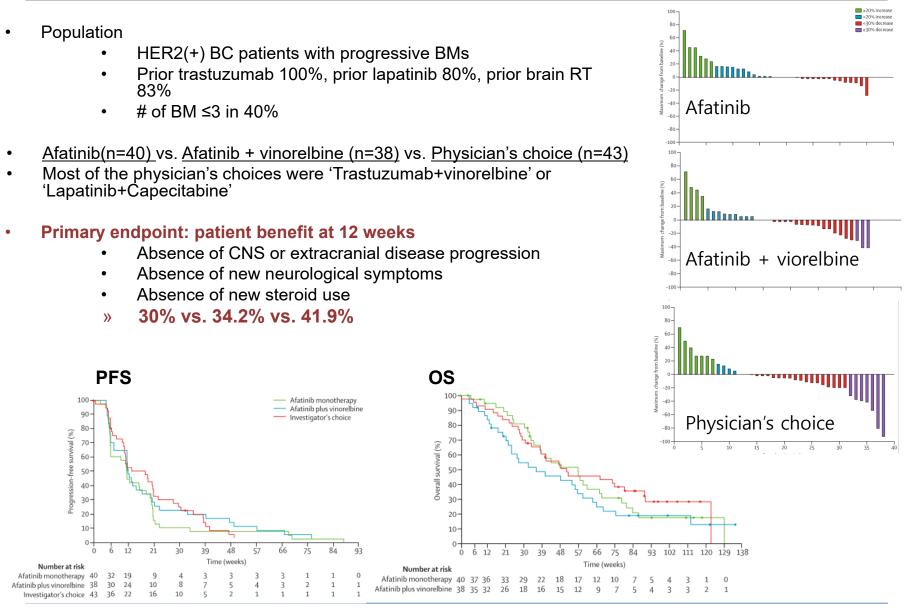
- > A retrospective study of 10 patients
 - Ten patients with newly diagnosed, asymptomatic, or progressive BM from HER2+ BC
 - Prior Trastuzumab (n=10), Lapatinib (n=6), Pertuzumab (n=3), radiotherapy (n=8)
 - median time from BM to T-DM1 initiation 12 months
 - Evaluation : Brain MRI every 12 weeks
 - Best intracranial response by RANO criteria: PR (n=3), SD(n=4), PD (n=3)
 - CNS Clinical benefit rate (CR+PR+SD ≥ 6 months) 50%
 - median OS from BM 42 months
 - median PFS from T-DM1 5 months, OS from T-DM1 8.5 months
- ➤ A largest retrospective study in five French centers (39 BC patients with BM , 30 uncontrolled)
 - 30 uncontrolled/progressive BM, 36 (95%) patients with prior loco-regional treatment for BM.
 - CR 0, PR 17 (44%)
 - median PFS 6.1 months
 - first progression site: brain (n=14), leptomeninges (n=2), extracranial lesion (n=5), both intraand extra-cranial lesion (n=3)
- ➤ In a retrospective of 20 patients with BC treated with T-DM1, CNS was subsequent metastasis site in 65%.

Lapatinib(L) and Capecitabine(C) for HER2(+) BM

Reference	Тх	Study design	# Pts	CNS ORR	TTP/PFS months
Lin 2008 JCO	L	Phase 2 Prior WBRT/SRS 95%	39	2.6%	3.0
Lin 2009 CCR	L	Phase 2 Prior WBRT 95% Prior Trastuzumab 100%	237	6%	2.4
Lin 2009 CCR	L+C	Phase 2	50	20%	3.6
Sutherland 2010 BJC	L+C	Expanded access Study Prior WBRT 94% Prior Trastuzumab 100%	34	21%	5.1
Metro 2011 Ann Oncol	L+C	Retrospective Prior WBRT/SRS 87% Prior Trastuzumab 100%	22	32%	5.1
Lin 2011 J Neurooncol	L+C	Phase 2 Prior WBRT/SRS and Trastuzumab	13	38%	NR

Low CNS ORR, but most of the subjects were heavily pretreated or had disease progression in CNS after local treatment.

Upfront Lapatinib + Capecitabine for HER2+ BCBM (LANDSCAPE)


- Eligibility (n=45)
 - HER2(+) BC patients with multiple BMs
 - 93% with prior trastuzumab
 - median # of BM 3, Breast cancer GPA index 3-4
 - No previous WBRT or SRS
- Primary endpoint: objective CNS response rate (Brain MRI q 6 weeks)
 - >50% volumetric reduction of CNS lesion
 - Absence of increased steroid use
 - Absence of progressive neurological symptoms
 - Absence of extra-CNS disease
- Results
 - » CNS ORR 65.9% (95% CI 50.1-79.5)
 - Median TTP 5.5 months.
 - Median time to CNS progression 5.5 months
 - Median time to radiotherapy 8.3months
 - Median OS 17.0 months
- ✓ ASCO guideline for HER2(+) BC and BM suggests that a particularly important consideration is the role of WBRT in management of limited brain metastatic disease.
- ✓ No data regarding neurocognitive function and QOL

Neratinib for progressive BM from HER2+ BM (TBCRC 022)

- Neratinib: irreversible panHER inhibitor
- In NEfERT-T Phase 3 trial, neratinib+paclitaxel showed delayed time to CNS (HR 0.45, 95% CI 0.26-0.78) compared with trastuzumab+paclitaxel.
- Patient population
 - HER2(+) BC patients with progressive BMs after local Tx
 - Previous WBRT and/or SRS 100%, Trastuzumab 90%, Lapatinib 85%
- Neratinib 240mg orally once per day
- Primary endpoint: composite CNS objective response rate
 - ≥ 50% reduction in volumetric sum of target CNS lesion
 - Absence of CNS or extracranial disease progression
 - Absence of progressive neurological symptoms
 - Absence of increased steroid use

Best Response	Cohort 1 (N = 40)
CR	0 (0)
PR	3* (8; 95% CI, 2% to 22%)
SD six or more cycles	4 (10)
SD less than six cycles	12 (30)
PD	
PD in CNS only	10 (25)
Symptomatic deterioration/clinical progression (CNS or non-CNS)	7 (18)
PD in CNS and non-CNS	2 (5)
Off treatment before restaging for toxicity	2 (5)

Afatinib for progressive BM from HER2+ BC (LUX-breast3)

Lapatinib as a radiosensitizer for BM

Lapatinib /WBRT Ph I trial (n=35)

[Design]

D1 Lapatinib 750mg twice/d followed by 1000mg(DL1),1250mg(DL2),1500mg(DL3) once daily, 4hrs before RT

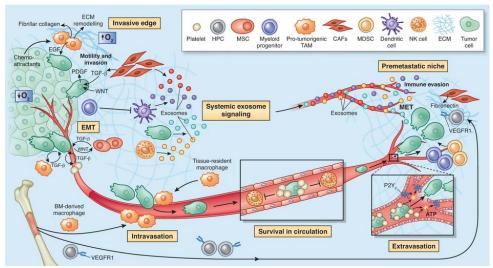
WBRT 2500Gy/15fx was begun between D1-8 of lapatinib

After WBRT, trastuzumab 2mg/kg weekly + lapatinib 1000mg once daily

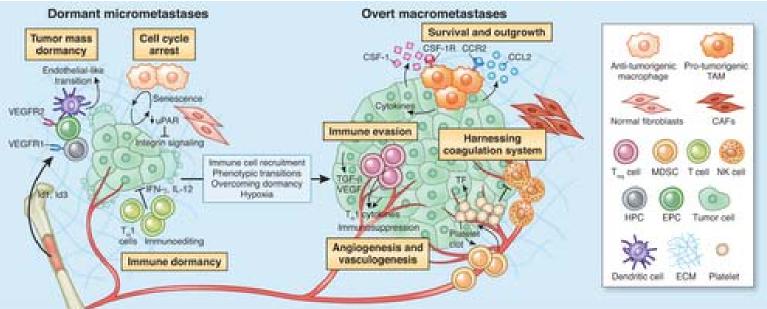
[DLTs]

None in 1000mg

In 7/27 patients in **1250mg** (rash, diarrhea, hypoxia, pulmonary embolus) **MTD** In 2/5 patients in 1500mg (mucositis, rash)

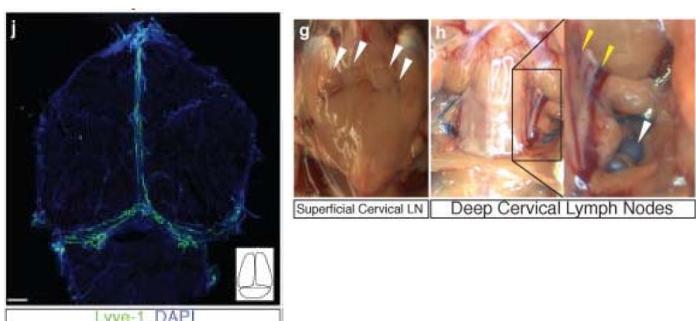

→ predefined feasibility criteria(DLT <3/27 at MTD) was not met

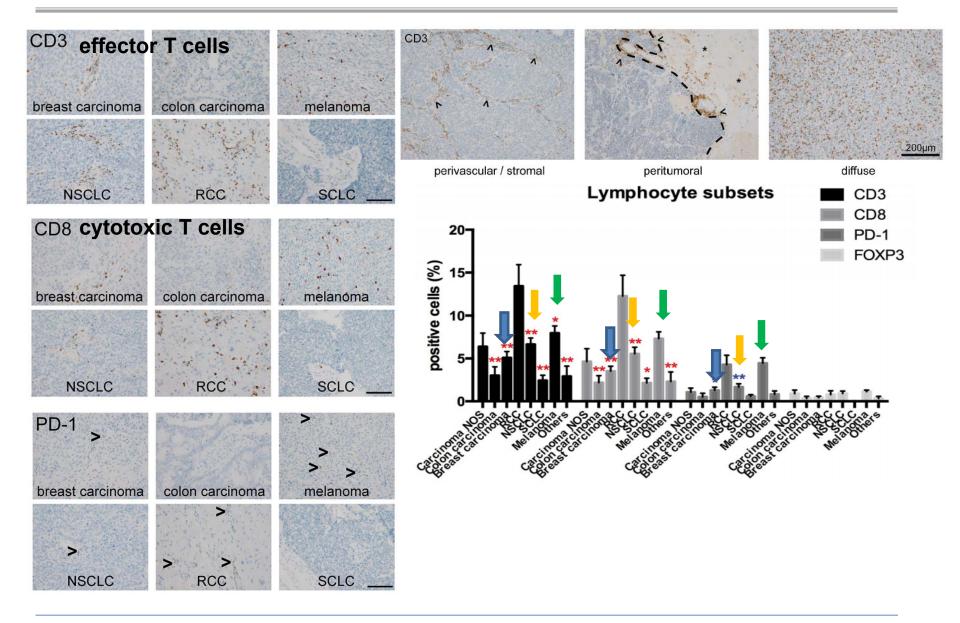
[Efficacy]


CNS ORR 79% by volumetric criteria among 28 evluable patients 6 month PFS rate 46%

Randomized Phase 2 trial of WBRT +/- Lapatinib is ongoing (NCT01622868)

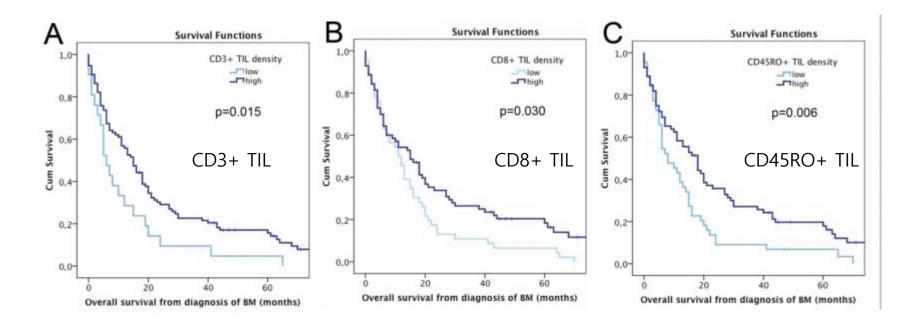
Immune microenvironment as a therapeutic target


The process of metastasic spread including BM are supported by immune cells such as tumor associated macrophages, chemokine pair CXCR4/CXCL12, tumor infiltrating lymphocytes.


Targeting immune microenvironment of BM

- Brain as a 'immune previlege' site?
- It does not mean that brain parenchyma suppresses of any immune responses. Brain parenchyma initiates and tightly regulates immune responses

Discovery of functional lymphatic system in CNS and its drainage to cervical LNs in an animal brain

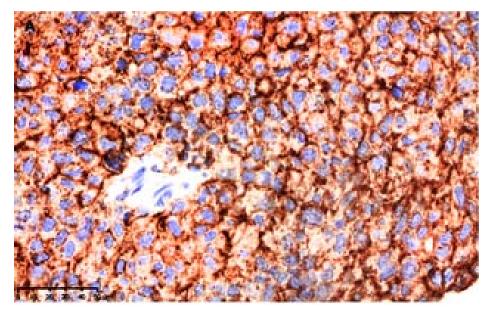


TILs in BM Tumor Tissue

High density of TILs is associated with improved survival of BM

116 BM specimens from various solid cancers including 17 breast cancer

Immune system as a potential biomarker and therapeutic target in patients with BM


PD-L1 expression in BM Tumor Tissue

● PD-L1 expression in TNBC (Xiu et al. SABCS 2015)

40% of BM (n=54) 8% of liver mets (n=,172) 17% of bone mets(n=47) 15% of breast tumor (n=1570)

PD-L1 expression in other brain tumors

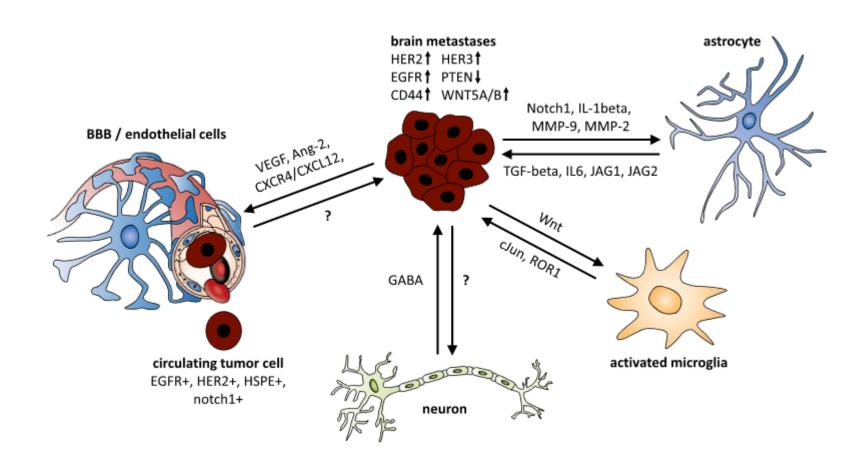
46% in Melanoma BM 52% in Lung Cancer BM 88% in Glioblastoma

PD-L1 expression in Melanoma BM

Immunotherapy for BM from BC? No direct evidences yet.

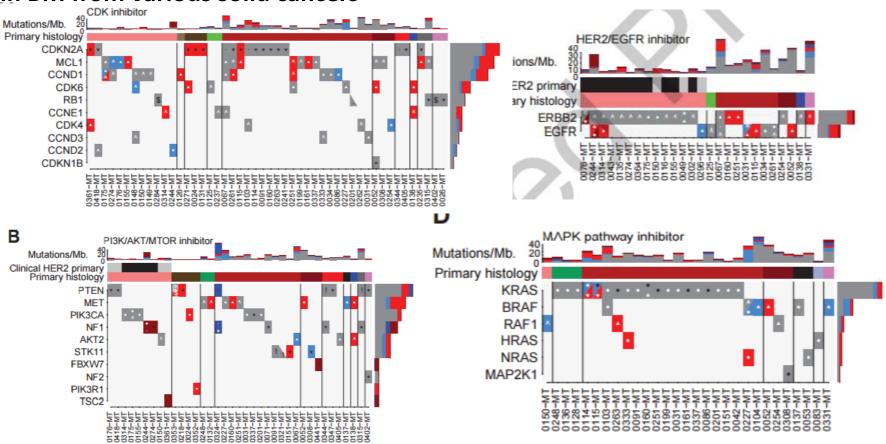
> Immune checkpoint inhibitors for BM from Melanoma or NSCLC

Reference	Тх	Study design	# Pts	CNS ORR	OS months
Margolin 2012	lpilimumab 10mg/kg iv q3wks	Phase 2 Prior WBRT or SRS 41 & 48%	51 (asymptomatic) 21 (stable steroids) Melanoma	16% 5%	7.0 3.7
Di Giacomo 2012	lpilimumab/fotemu stine	Phase 2 Prior WBRT or SRS 35%	20 (asymptomatic) melanoma	25%	13.4
Goldberg 2016	Pembrolizumab 10mg/kg iv q2wks	Phase 2 Untreated (n=14) or progressive , asymptomatic BM	18 melanoma 18 NSCLC	22% 33%	Not reached 7.7


> Immune checkpoint inhibitors for BC

- KEYNOTE-012 Phase IB (32 TNBCs): Pembrolizumab 10mg/kg every 2wks
 - ORR 18.5%, median PFS 1.9 months, median OS 11.2 months, DCR at 24weeks 25.9%
 - Three patients with BM enrolled, Efficacy regarding BM is not known.
- JAVELIN Phase IB (58 TNBCs): Avelumab 10mg/kg every 2wks
 - ORR 8.6%, DCR 31.0%
 - Patients with CNS metastases was excluded

> Oncoing Ph II trials


Durvalumab(anti-PD-L1) monotherapy, Tremelimumab (CTLA-4 mAb) with WBRT or SRS

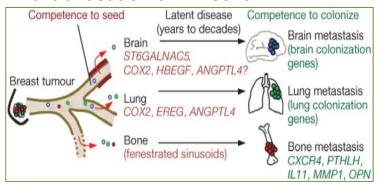
Cross-talk between the BM and resident cells

Signaling pathways involved in BM

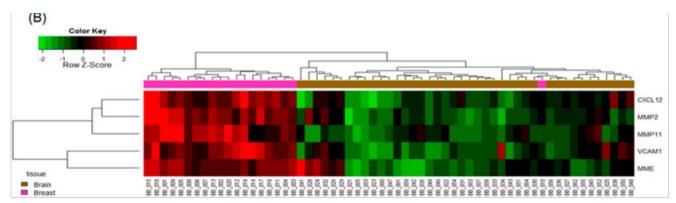
The Landscape of potentially actionable genomic alterations in BM from various solid cancers

Whole exome sequening of 86 matched BM and primary tumors revealed alterations associated with sensitivity to PI3K/AKT/mTOR, CDK, and HER2/EGFR inhibitors in BM.

Signaling pathways as mediators of BM


• Potential mediators of BM from 368 breast tumors (Bos et al. Nature 2009)

COX2: promotes extravasation


EGFR ligands: heparin-binding EGF(HBEGF), epiregulin

induces cancer cell motiligy and invasiveness
 ST6GALNAC5: brain-specific sialyltransferase

Model of organ-specific metastatic extravasation of BC cells

- Matched gene expression analysis
 between 20 primary BC and 41 BCBM (Lee et al. 2016)
 upregulated genes in primary BC
 - CXCL12, MMP2, MMP11, VCAM1, MME
 - assoaicted with tumor progression, angiogenesis, and metastasis

BM from Luminal type of Breast Cancer

- Lower frequency of BM in Luminal BC
 - 5-year cumulative incidence of BM
 : 0.1% (Luminal A) vs. 3.3% (Luminal B) vs. 3.7% (HER2) vs. 7.4% (TNBC)
- Multiple case reports describing response of BM to endocrine Tx
- Development of BM at later course of metastatic BC
- Most ER(+) breast cancers become endocrine-refractory by the time of BM development
- Altered hormone receptor expression during the process of BM
 - : ER Loss in 57%, PR Loss in 44%

Pair No.	PAM50	
	Breast	Brain
1	LumA	LumB
2	LumA	LumA
3	Basal	Basal
4	Her2	LumA
5	LumA	Her2
6	Her2	Her2
7	LumA	Her2
8	Basal	Basal
9	Her2	Her2
10	Basa1	Basal
11	LumA	LumB
12	Her2	Normal
13	Basal	Basal
14	Basal	Basal
15	LumA	Her2
16	Basal	Basal
18	Normal	Basal

Challenges in designing and interpreting clinical trials of BM

- Subjects
 - ✓ In the refractory setting? Systemic therapy as an upfront therapy for BM?
 - ✓ Symptoms of BM? Requirement on steroids?
 - ✓ leptomeningeal carcinomatosis unmet need of unmet need
- Appropriate primary endpoint?
 - ✓ Intracranial efficacy vs. Extracranial efficacy vs. Both
 - ✓ Response evaluation
 - RECIST
 - RANO criteria for BM was suggested in 2015
- Identifying higher risk group for BM/Trials on secondary prevention

Summary

- Targeting BBB : ANG1005 with promising efficacy in leptomeningeal carcinomatosis
- Anti-HER2 Treatment for BC-BM
 - Adding Pertuzumab delays time to CNS progression.
 - Survival benefit after CNS mets: Pertuzumab, T-DM1, continuation of trastuzumab
 - Intracranial efficacy of T-DM1 in retrospective studies
 - Lapatinib+Capecitabine have a role as an upfront Tx for BM
 - For heavily pretreated patients with prior brain RT and trastuzumab, currently available anti-HER2 agents had limited intracranial efficacy.
- Immune checkpoint inhibitors for BM
 - Inflammatory microenvironment can be a target of BM treatment
 - Efficacy shown in phase 2 trials only in BM from melanoma or non-small cell lung cancer

Summary

Oldies, but goodies 姜是老的辣 本木に勝るうら木無し。 구관이 명관

Old friend in treating BM = local modalities

More understanding of BM biology would lead us to find better targeted treatment of BM.